| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rngcl.b | 
							 |-  B = ( Base ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							rngcl.t | 
							 |-  .x. = ( .r ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							rnglz.z | 
							 |-  .0. = ( 0g ` R )  | 
						
						
							| 4 | 
							
								
							 | 
							rngabl | 
							 |-  ( R e. Rng -> R e. Abel )  | 
						
						
							| 5 | 
							
								
							 | 
							ablgrp | 
							 |-  ( R e. Abel -> R e. Grp )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							 |-  ( R e. Rng -> R e. Grp )  | 
						
						
							| 7 | 
							
								1 3
							 | 
							grpidcl | 
							 |-  ( R e. Grp -> .0. e. B )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` R ) = ( +g ` R )  | 
						
						
							| 9 | 
							
								1 8 3
							 | 
							grplid | 
							 |-  ( ( R e. Grp /\ .0. e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. )  | 
						
						
							| 10 | 
							
								6 7 9
							 | 
							syl2anc2 | 
							 |-  ( R e. Rng -> ( .0. ( +g ` R ) .0. ) = .0. )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( R e. Rng /\ X e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. )  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq1d | 
							 |-  ( ( R e. Rng /\ X e. B ) -> ( ( .0. ( +g ` R ) .0. ) .x. X ) = ( .0. .x. X ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simpl | 
							 |-  ( ( R e. Rng /\ X e. B ) -> R e. Rng )  | 
						
						
							| 14 | 
							
								6 7
							 | 
							syl | 
							 |-  ( R e. Rng -> .0. e. B )  | 
						
						
							| 15 | 
							
								14 14
							 | 
							jca | 
							 |-  ( R e. Rng -> ( .0. e. B /\ .0. e. B ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							anim1i | 
							 |-  ( ( R e. Rng /\ X e. B ) -> ( ( .0. e. B /\ .0. e. B ) /\ X e. B ) )  | 
						
						
							| 17 | 
							
								
							 | 
							df-3an | 
							 |-  ( ( .0. e. B /\ .0. e. B /\ X e. B ) <-> ( ( .0. e. B /\ .0. e. B ) /\ X e. B ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							sylibr | 
							 |-  ( ( R e. Rng /\ X e. B ) -> ( .0. e. B /\ .0. e. B /\ X e. B ) )  | 
						
						
							| 19 | 
							
								1 8 2
							 | 
							rngdir | 
							 |-  ( ( R e. Rng /\ ( .0. e. B /\ .0. e. B /\ X e. B ) ) -> ( ( .0. ( +g ` R ) .0. ) .x. X ) = ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) )  | 
						
						
							| 20 | 
							
								13 18 19
							 | 
							syl2anc | 
							 |-  ( ( R e. Rng /\ X e. B ) -> ( ( .0. ( +g ` R ) .0. ) .x. X ) = ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) )  | 
						
						
							| 21 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( R e. Rng /\ X e. B ) -> R e. Grp )  | 
						
						
							| 22 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( R e. Rng /\ X e. B ) -> .0. e. B )  | 
						
						
							| 23 | 
							
								
							 | 
							simpr | 
							 |-  ( ( R e. Rng /\ X e. B ) -> X e. B )  | 
						
						
							| 24 | 
							
								1 2
							 | 
							rngcl | 
							 |-  ( ( R e. Rng /\ .0. e. B /\ X e. B ) -> ( .0. .x. X ) e. B )  | 
						
						
							| 25 | 
							
								13 22 23 24
							 | 
							syl3anc | 
							 |-  ( ( R e. Rng /\ X e. B ) -> ( .0. .x. X ) e. B )  | 
						
						
							| 26 | 
							
								1 8 3
							 | 
							grprid | 
							 |-  ( ( R e. Grp /\ ( .0. .x. X ) e. B ) -> ( ( .0. .x. X ) ( +g ` R ) .0. ) = ( .0. .x. X ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							eqcomd | 
							 |-  ( ( R e. Grp /\ ( .0. .x. X ) e. B ) -> ( .0. .x. X ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) )  | 
						
						
							| 28 | 
							
								21 25 27
							 | 
							syl2anc | 
							 |-  ( ( R e. Rng /\ X e. B ) -> ( .0. .x. X ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) )  | 
						
						
							| 29 | 
							
								12 20 28
							 | 
							3eqtr3d | 
							 |-  ( ( R e. Rng /\ X e. B ) -> ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) )  | 
						
						
							| 30 | 
							
								1 8
							 | 
							grplcan | 
							 |-  ( ( R e. Grp /\ ( ( .0. .x. X ) e. B /\ .0. e. B /\ ( .0. .x. X ) e. B ) ) -> ( ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) <-> ( .0. .x. X ) = .0. ) )  | 
						
						
							| 31 | 
							
								21 25 22 25 30
							 | 
							syl13anc | 
							 |-  ( ( R e. Rng /\ X e. B ) -> ( ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) <-> ( .0. .x. X ) = .0. ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							mpbid | 
							 |-  ( ( R e. Rng /\ X e. B ) -> ( .0. .x. X ) = .0. )  |