| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngneglmul.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | rngneglmul.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | rngneglmul.n |  |-  N = ( invg ` R ) | 
						
							| 4 |  | rngneglmul.r |  |-  ( ph -> R e. Rng ) | 
						
							| 5 |  | rngneglmul.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | rngneglmul.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | rnggrp |  |-  ( R e. Rng -> R e. Grp ) | 
						
							| 8 | 4 7 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 9 | 1 3 8 6 | grpinvcld |  |-  ( ph -> ( N ` Y ) e. B ) | 
						
							| 10 | 1 2 3 4 5 9 | rngmneg1 |  |-  ( ph -> ( ( N ` X ) .x. ( N ` Y ) ) = ( N ` ( X .x. ( N ` Y ) ) ) ) | 
						
							| 11 | 1 2 3 4 5 6 | rngmneg2 |  |-  ( ph -> ( X .x. ( N ` Y ) ) = ( N ` ( X .x. Y ) ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ph -> ( N ` ( X .x. ( N ` Y ) ) ) = ( N ` ( N ` ( X .x. Y ) ) ) ) | 
						
							| 13 | 1 2 | rngcl |  |-  ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) | 
						
							| 14 | 4 5 6 13 | syl3anc |  |-  ( ph -> ( X .x. Y ) e. B ) | 
						
							| 15 | 1 3 | grpinvinv |  |-  ( ( R e. Grp /\ ( X .x. Y ) e. B ) -> ( N ` ( N ` ( X .x. Y ) ) ) = ( X .x. Y ) ) | 
						
							| 16 | 8 14 15 | syl2anc |  |-  ( ph -> ( N ` ( N ` ( X .x. Y ) ) ) = ( X .x. Y ) ) | 
						
							| 17 | 10 12 16 | 3eqtrd |  |-  ( ph -> ( ( N ` X ) .x. ( N ` Y ) ) = ( X .x. Y ) ) |