Step |
Hyp |
Ref |
Expression |
1 |
|
fnmgp |
|- mulGrp Fn _V |
2 |
|
ssv |
|- Rng C_ _V |
3 |
|
fnssres |
|- ( ( mulGrp Fn _V /\ Rng C_ _V ) -> ( mulGrp |` Rng ) Fn Rng ) |
4 |
1 2 3
|
mp2an |
|- ( mulGrp |` Rng ) Fn Rng |
5 |
|
fvres |
|- ( a e. Rng -> ( ( mulGrp |` Rng ) ` a ) = ( mulGrp ` a ) ) |
6 |
|
eqid |
|- ( mulGrp ` a ) = ( mulGrp ` a ) |
7 |
6
|
rngmgp |
|- ( a e. Rng -> ( mulGrp ` a ) e. Smgrp ) |
8 |
5 7
|
eqeltrd |
|- ( a e. Rng -> ( ( mulGrp |` Rng ) ` a ) e. Smgrp ) |
9 |
8
|
rgen |
|- A. a e. Rng ( ( mulGrp |` Rng ) ` a ) e. Smgrp |
10 |
|
ffnfv |
|- ( ( mulGrp |` Rng ) : Rng --> Smgrp <-> ( ( mulGrp |` Rng ) Fn Rng /\ A. a e. Rng ( ( mulGrp |` Rng ) ` a ) e. Smgrp ) ) |
11 |
4 9 10
|
mpbir2an |
|- ( mulGrp |` Rng ) : Rng --> Smgrp |