| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngneglmul.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | rngneglmul.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | rngneglmul.n |  |-  N = ( invg ` R ) | 
						
							| 4 |  | rngneglmul.r |  |-  ( ph -> R e. Rng ) | 
						
							| 5 |  | rngneglmul.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | rngneglmul.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 8 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 9 |  | rnggrp |  |-  ( R e. Rng -> R e. Grp ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 11 | 1 7 8 3 10 6 | grplinvd |  |-  ( ph -> ( ( N ` Y ) ( +g ` R ) Y ) = ( 0g ` R ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ph -> ( X .x. ( ( N ` Y ) ( +g ` R ) Y ) ) = ( X .x. ( 0g ` R ) ) ) | 
						
							| 13 | 1 2 8 | rngrz |  |-  ( ( R e. Rng /\ X e. B ) -> ( X .x. ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 14 | 4 5 13 | syl2anc |  |-  ( ph -> ( X .x. ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 15 | 12 14 | eqtrd |  |-  ( ph -> ( X .x. ( ( N ` Y ) ( +g ` R ) Y ) ) = ( 0g ` R ) ) | 
						
							| 16 | 1 2 | rngcl |  |-  ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) | 
						
							| 17 | 4 5 6 16 | syl3anc |  |-  ( ph -> ( X .x. Y ) e. B ) | 
						
							| 18 | 1 3 10 6 | grpinvcld |  |-  ( ph -> ( N ` Y ) e. B ) | 
						
							| 19 | 1 2 | rngcl |  |-  ( ( R e. Rng /\ X e. B /\ ( N ` Y ) e. B ) -> ( X .x. ( N ` Y ) ) e. B ) | 
						
							| 20 | 4 5 18 19 | syl3anc |  |-  ( ph -> ( X .x. ( N ` Y ) ) e. B ) | 
						
							| 21 | 1 7 8 3 | grpinvid2 |  |-  ( ( R e. Grp /\ ( X .x. Y ) e. B /\ ( X .x. ( N ` Y ) ) e. B ) -> ( ( N ` ( X .x. Y ) ) = ( X .x. ( N ` Y ) ) <-> ( ( X .x. ( N ` Y ) ) ( +g ` R ) ( X .x. Y ) ) = ( 0g ` R ) ) ) | 
						
							| 22 | 10 17 20 21 | syl3anc |  |-  ( ph -> ( ( N ` ( X .x. Y ) ) = ( X .x. ( N ` Y ) ) <-> ( ( X .x. ( N ` Y ) ) ( +g ` R ) ( X .x. Y ) ) = ( 0g ` R ) ) ) | 
						
							| 23 | 1 7 2 | rngdi |  |-  ( ( R e. Rng /\ ( X e. B /\ ( N ` Y ) e. B /\ Y e. B ) ) -> ( X .x. ( ( N ` Y ) ( +g ` R ) Y ) ) = ( ( X .x. ( N ` Y ) ) ( +g ` R ) ( X .x. Y ) ) ) | 
						
							| 24 | 23 | eqcomd |  |-  ( ( R e. Rng /\ ( X e. B /\ ( N ` Y ) e. B /\ Y e. B ) ) -> ( ( X .x. ( N ` Y ) ) ( +g ` R ) ( X .x. Y ) ) = ( X .x. ( ( N ` Y ) ( +g ` R ) Y ) ) ) | 
						
							| 25 | 4 5 18 6 24 | syl13anc |  |-  ( ph -> ( ( X .x. ( N ` Y ) ) ( +g ` R ) ( X .x. Y ) ) = ( X .x. ( ( N ` Y ) ( +g ` R ) Y ) ) ) | 
						
							| 26 | 25 | eqeq1d |  |-  ( ph -> ( ( ( X .x. ( N ` Y ) ) ( +g ` R ) ( X .x. Y ) ) = ( 0g ` R ) <-> ( X .x. ( ( N ` Y ) ( +g ` R ) Y ) ) = ( 0g ` R ) ) ) | 
						
							| 27 | 22 26 | bitrd |  |-  ( ph -> ( ( N ` ( X .x. Y ) ) = ( X .x. ( N ` Y ) ) <-> ( X .x. ( ( N ` Y ) ( +g ` R ) Y ) ) = ( 0g ` R ) ) ) | 
						
							| 28 | 15 27 | mpbird |  |-  ( ph -> ( N ` ( X .x. Y ) ) = ( X .x. ( N ` Y ) ) ) | 
						
							| 29 | 28 | eqcomd |  |-  ( ph -> ( X .x. ( N ` Y ) ) = ( N ` ( X .x. Y ) ) ) |