Metamath Proof Explorer


Theorem rngmulr

Description: The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypothesis rngfn.r
|- R = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. }
Assertion rngmulr
|- ( .x. e. V -> .x. = ( .r ` R ) )

Proof

Step Hyp Ref Expression
1 rngfn.r
 |-  R = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. }
2 1 rngstr
 |-  R Struct <. 1 , 3 >.
3 mulrid
 |-  .r = Slot ( .r ` ndx )
4 snsstp3
 |-  { <. ( .r ` ndx ) , .x. >. } C_ { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. }
5 4 1 sseqtrri
 |-  { <. ( .r ` ndx ) , .x. >. } C_ R
6 2 3 5 strfv
 |-  ( .x. e. V -> .x. = ( .r ` R ) )