Description: The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rngfn.r | |- R = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } | |
| Assertion | rngmulr | |- ( .x. e. V -> .x. = ( .r ` R ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rngfn.r |  |-  R = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } | |
| 2 | 1 | rngstr | |- R Struct <. 1 , 3 >. | 
| 3 | mulridx | |- .r = Slot ( .r ` ndx ) | |
| 4 | snsstp3 |  |-  { <. ( .r ` ndx ) , .x. >. } C_ { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } | |
| 5 | 4 1 | sseqtrri |  |-  { <. ( .r ` ndx ) , .x. >. } C_ R | 
| 6 | 2 3 5 | strfv | |- ( .x. e. V -> .x. = ( .r ` R ) ) |