Step |
Hyp |
Ref |
Expression |
1 |
|
ringnegl.b |
|- B = ( Base ` R ) |
2 |
|
ringnegl.t |
|- .x. = ( .r ` R ) |
3 |
|
ringnegl.u |
|- .1. = ( 1r ` R ) |
4 |
|
ringnegl.n |
|- N = ( invg ` R ) |
5 |
|
ringnegl.r |
|- ( ph -> R e. Ring ) |
6 |
|
ringnegl.x |
|- ( ph -> X e. B ) |
7 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
8 |
5 7
|
syl |
|- ( ph -> R e. Grp ) |
9 |
1 3
|
ringidcl |
|- ( R e. Ring -> .1. e. B ) |
10 |
5 9
|
syl |
|- ( ph -> .1. e. B ) |
11 |
1 4
|
grpinvcl |
|- ( ( R e. Grp /\ .1. e. B ) -> ( N ` .1. ) e. B ) |
12 |
8 10 11
|
syl2anc |
|- ( ph -> ( N ` .1. ) e. B ) |
13 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
14 |
1 13 2
|
ringdi |
|- ( ( R e. Ring /\ ( X e. B /\ ( N ` .1. ) e. B /\ .1. e. B ) ) -> ( X .x. ( ( N ` .1. ) ( +g ` R ) .1. ) ) = ( ( X .x. ( N ` .1. ) ) ( +g ` R ) ( X .x. .1. ) ) ) |
15 |
5 6 12 10 14
|
syl13anc |
|- ( ph -> ( X .x. ( ( N ` .1. ) ( +g ` R ) .1. ) ) = ( ( X .x. ( N ` .1. ) ) ( +g ` R ) ( X .x. .1. ) ) ) |
16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
17 |
1 13 16 4
|
grplinv |
|- ( ( R e. Grp /\ .1. e. B ) -> ( ( N ` .1. ) ( +g ` R ) .1. ) = ( 0g ` R ) ) |
18 |
8 10 17
|
syl2anc |
|- ( ph -> ( ( N ` .1. ) ( +g ` R ) .1. ) = ( 0g ` R ) ) |
19 |
18
|
oveq2d |
|- ( ph -> ( X .x. ( ( N ` .1. ) ( +g ` R ) .1. ) ) = ( X .x. ( 0g ` R ) ) ) |
20 |
1 2 16
|
ringrz |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
21 |
5 6 20
|
syl2anc |
|- ( ph -> ( X .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
22 |
19 21
|
eqtrd |
|- ( ph -> ( X .x. ( ( N ` .1. ) ( +g ` R ) .1. ) ) = ( 0g ` R ) ) |
23 |
1 2 3
|
ringridm |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. .1. ) = X ) |
24 |
5 6 23
|
syl2anc |
|- ( ph -> ( X .x. .1. ) = X ) |
25 |
24
|
oveq2d |
|- ( ph -> ( ( X .x. ( N ` .1. ) ) ( +g ` R ) ( X .x. .1. ) ) = ( ( X .x. ( N ` .1. ) ) ( +g ` R ) X ) ) |
26 |
15 22 25
|
3eqtr3rd |
|- ( ph -> ( ( X .x. ( N ` .1. ) ) ( +g ` R ) X ) = ( 0g ` R ) ) |
27 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ ( N ` .1. ) e. B ) -> ( X .x. ( N ` .1. ) ) e. B ) |
28 |
5 6 12 27
|
syl3anc |
|- ( ph -> ( X .x. ( N ` .1. ) ) e. B ) |
29 |
1 13 16 4
|
grpinvid2 |
|- ( ( R e. Grp /\ X e. B /\ ( X .x. ( N ` .1. ) ) e. B ) -> ( ( N ` X ) = ( X .x. ( N ` .1. ) ) <-> ( ( X .x. ( N ` .1. ) ) ( +g ` R ) X ) = ( 0g ` R ) ) ) |
30 |
8 6 28 29
|
syl3anc |
|- ( ph -> ( ( N ` X ) = ( X .x. ( N ` .1. ) ) <-> ( ( X .x. ( N ` .1. ) ) ( +g ` R ) X ) = ( 0g ` R ) ) ) |
31 |
26 30
|
mpbird |
|- ( ph -> ( N ` X ) = ( X .x. ( N ` .1. ) ) ) |
32 |
31
|
eqcomd |
|- ( ph -> ( X .x. ( N ` .1. ) ) = ( N ` X ) ) |