Description: The additive identity of a ring is a right identity element. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ring0cl.1 | |- G = ( 1st ` R ) | |
| ring0cl.2 | |- X = ran G | ||
| ring0cl.3 | |- Z = ( GId ` G ) | ||
| Assertion | rngo0rid | |- ( ( R e. RingOps /\ A e. X ) -> ( A G Z ) = A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ring0cl.1 | |- G = ( 1st ` R ) | |
| 2 | ring0cl.2 | |- X = ran G | |
| 3 | ring0cl.3 | |- Z = ( GId ` G ) | |
| 4 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) | 
| 5 | 2 3 | grporid | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G Z ) = A ) | 
| 6 | 4 5 | sylan | |- ( ( R e. RingOps /\ A e. X ) -> ( A G Z ) = A ) |