| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringi.1 |  |-  G = ( 1st ` R ) | 
						
							| 2 |  | ringi.2 |  |-  H = ( 2nd ` R ) | 
						
							| 3 |  | ringi.3 |  |-  X = ran G | 
						
							| 4 | 1 2 3 | rngoid |  |-  ( ( R e. RingOps /\ A e. X ) -> E. x e. X ( ( x H A ) = A /\ ( A H x ) = A ) ) | 
						
							| 5 |  | oveq12 |  |-  ( ( ( x H A ) = A /\ ( x H A ) = A ) -> ( ( x H A ) G ( x H A ) ) = ( A G A ) ) | 
						
							| 6 | 5 | anidms |  |-  ( ( x H A ) = A -> ( ( x H A ) G ( x H A ) ) = ( A G A ) ) | 
						
							| 7 | 6 | eqcomd |  |-  ( ( x H A ) = A -> ( A G A ) = ( ( x H A ) G ( x H A ) ) ) | 
						
							| 8 |  | simpll |  |-  ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> R e. RingOps ) | 
						
							| 9 |  | simpr |  |-  ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> x e. X ) | 
						
							| 10 |  | simplr |  |-  ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> A e. X ) | 
						
							| 11 | 1 2 3 | rngodir |  |-  ( ( R e. RingOps /\ ( x e. X /\ x e. X /\ A e. X ) ) -> ( ( x G x ) H A ) = ( ( x H A ) G ( x H A ) ) ) | 
						
							| 12 | 8 9 9 10 11 | syl13anc |  |-  ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> ( ( x G x ) H A ) = ( ( x H A ) G ( x H A ) ) ) | 
						
							| 13 | 12 | eqeq2d |  |-  ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> ( ( A G A ) = ( ( x G x ) H A ) <-> ( A G A ) = ( ( x H A ) G ( x H A ) ) ) ) | 
						
							| 14 | 7 13 | imbitrrid |  |-  ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> ( ( x H A ) = A -> ( A G A ) = ( ( x G x ) H A ) ) ) | 
						
							| 15 | 14 | adantrd |  |-  ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> ( ( ( x H A ) = A /\ ( A H x ) = A ) -> ( A G A ) = ( ( x G x ) H A ) ) ) | 
						
							| 16 | 15 | reximdva |  |-  ( ( R e. RingOps /\ A e. X ) -> ( E. x e. X ( ( x H A ) = A /\ ( A H x ) = A ) -> E. x e. X ( A G A ) = ( ( x G x ) H A ) ) ) | 
						
							| 17 | 4 16 | mpd |  |-  ( ( R e. RingOps /\ A e. X ) -> E. x e. X ( A G A ) = ( ( x G x ) H A ) ) |