Metamath Proof Explorer


Theorem rngo2times

Description: A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unit with itself. (Contributed by AV, 24-Aug-2021)

Ref Expression
Hypotheses ringadd2.b
|- B = ( Base ` R )
ringadd2.p
|- .+ = ( +g ` R )
ringadd2.t
|- .x. = ( .r ` R )
rngo2times.u
|- .1. = ( 1r ` R )
Assertion rngo2times
|- ( ( R e. Ring /\ A e. B ) -> ( A .+ A ) = ( ( .1. .+ .1. ) .x. A ) )

Proof

Step Hyp Ref Expression
1 ringadd2.b
 |-  B = ( Base ` R )
2 ringadd2.p
 |-  .+ = ( +g ` R )
3 ringadd2.t
 |-  .x. = ( .r ` R )
4 rngo2times.u
 |-  .1. = ( 1r ` R )
5 1 3 4 ringlidm
 |-  ( ( R e. Ring /\ A e. B ) -> ( .1. .x. A ) = A )
6 5 eqcomd
 |-  ( ( R e. Ring /\ A e. B ) -> A = ( .1. .x. A ) )
7 6 6 oveq12d
 |-  ( ( R e. Ring /\ A e. B ) -> ( A .+ A ) = ( ( .1. .x. A ) .+ ( .1. .x. A ) ) )
8 simpl
 |-  ( ( R e. Ring /\ A e. B ) -> R e. Ring )
9 1 4 ringidcl
 |-  ( R e. Ring -> .1. e. B )
10 9 adantr
 |-  ( ( R e. Ring /\ A e. B ) -> .1. e. B )
11 simpr
 |-  ( ( R e. Ring /\ A e. B ) -> A e. B )
12 1 2 3 ringdir
 |-  ( ( R e. Ring /\ ( .1. e. B /\ .1. e. B /\ A e. B ) ) -> ( ( .1. .+ .1. ) .x. A ) = ( ( .1. .x. A ) .+ ( .1. .x. A ) ) )
13 8 10 10 11 12 syl13anc
 |-  ( ( R e. Ring /\ A e. B ) -> ( ( .1. .+ .1. ) .x. A ) = ( ( .1. .x. A ) .+ ( .1. .x. A ) ) )
14 7 13 eqtr4d
 |-  ( ( R e. Ring /\ A e. B ) -> ( A .+ A ) = ( ( .1. .+ .1. ) .x. A ) )