Step |
Hyp |
Ref |
Expression |
1 |
|
ringadd2.b |
|- B = ( Base ` R ) |
2 |
|
ringadd2.p |
|- .+ = ( +g ` R ) |
3 |
|
ringadd2.t |
|- .x. = ( .r ` R ) |
4 |
|
rngo2times.u |
|- .1. = ( 1r ` R ) |
5 |
1 3 4
|
ringlidm |
|- ( ( R e. Ring /\ A e. B ) -> ( .1. .x. A ) = A ) |
6 |
5
|
eqcomd |
|- ( ( R e. Ring /\ A e. B ) -> A = ( .1. .x. A ) ) |
7 |
6 6
|
oveq12d |
|- ( ( R e. Ring /\ A e. B ) -> ( A .+ A ) = ( ( .1. .x. A ) .+ ( .1. .x. A ) ) ) |
8 |
|
simpl |
|- ( ( R e. Ring /\ A e. B ) -> R e. Ring ) |
9 |
1 4
|
ringidcl |
|- ( R e. Ring -> .1. e. B ) |
10 |
9
|
adantr |
|- ( ( R e. Ring /\ A e. B ) -> .1. e. B ) |
11 |
|
simpr |
|- ( ( R e. Ring /\ A e. B ) -> A e. B ) |
12 |
1 2 3
|
ringdir |
|- ( ( R e. Ring /\ ( .1. e. B /\ .1. e. B /\ A e. B ) ) -> ( ( .1. .+ .1. ) .x. A ) = ( ( .1. .x. A ) .+ ( .1. .x. A ) ) ) |
13 |
8 10 10 11 12
|
syl13anc |
|- ( ( R e. Ring /\ A e. B ) -> ( ( .1. .+ .1. ) .x. A ) = ( ( .1. .x. A ) .+ ( .1. .x. A ) ) ) |
14 |
7 13
|
eqtr4d |
|- ( ( R e. Ring /\ A e. B ) -> ( A .+ A ) = ( ( .1. .+ .1. ) .x. A ) ) |