Description: The addition operation of a ring is commutative. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringgcl.1 | |- G = ( 1st ` R ) |
|
ringgcl.2 | |- X = ran G |
||
Assertion | rngoa32 | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( ( A G C ) G B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgcl.1 | |- G = ( 1st ` R ) |
|
2 | ringgcl.2 | |- X = ran G |
|
3 | 1 | rngoablo | |- ( R e. RingOps -> G e. AbelOp ) |
4 | 2 | ablo32 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( ( A G C ) G B ) ) |
5 | 3 4 | sylan | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( ( A G C ) G B ) ) |