Metamath Proof Explorer


Theorem rngoa4

Description: Rearrangement of 4 terms in a sum of ring elements. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ringgcl.1
|- G = ( 1st ` R )
ringgcl.2
|- X = ran G
Assertion rngoa4
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( C G D ) ) = ( ( A G C ) G ( B G D ) ) )

Proof

Step Hyp Ref Expression
1 ringgcl.1
 |-  G = ( 1st ` R )
2 ringgcl.2
 |-  X = ran G
3 1 rngoablo
 |-  ( R e. RingOps -> G e. AbelOp )
4 2 ablo4
 |-  ( ( G e. AbelOp /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( C G D ) ) = ( ( A G C ) G ( B G D ) ) )
5 3 4 syl3an1
 |-  ( ( R e. RingOps /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( C G D ) ) = ( ( A G C ) G ( B G D ) ) )