| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-br |
|- ( G RingOps H <-> <. G , H >. e. RingOps ) |
| 2 |
|
relrngo |
|- Rel RingOps |
| 3 |
2
|
brrelex12i |
|- ( G RingOps H -> ( G e. _V /\ H e. _V ) ) |
| 4 |
|
op1stg |
|- ( ( G e. _V /\ H e. _V ) -> ( 1st ` <. G , H >. ) = G ) |
| 5 |
3 4
|
syl |
|- ( G RingOps H -> ( 1st ` <. G , H >. ) = G ) |
| 6 |
1 5
|
sylbir |
|- ( <. G , H >. e. RingOps -> ( 1st ` <. G , H >. ) = G ) |
| 7 |
|
eqid |
|- ( 1st ` <. G , H >. ) = ( 1st ` <. G , H >. ) |
| 8 |
7
|
rngoablo |
|- ( <. G , H >. e. RingOps -> ( 1st ` <. G , H >. ) e. AbelOp ) |
| 9 |
6 8
|
eqeltrrd |
|- ( <. G , H >. e. RingOps -> G e. AbelOp ) |