Description: Adding the negative in a ring gives zero. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringnegcl.1 | |- G = ( 1st ` R ) | |
| ringnegcl.2 | |- X = ran G | ||
| ringnegcl.3 | |- N = ( inv ` G ) | ||
| ringaddneg.4 | |- Z = ( GId ` G ) | ||
| Assertion | rngoaddneg2 | |- ( ( R e. RingOps /\ A e. X ) -> ( ( N ` A ) G A ) = Z ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringnegcl.1 | |- G = ( 1st ` R ) | |
| 2 | ringnegcl.2 | |- X = ran G | |
| 3 | ringnegcl.3 | |- N = ( inv ` G ) | |
| 4 | ringaddneg.4 | |- Z = ( GId ` G ) | |
| 5 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) | 
| 6 | 2 4 3 | grpolinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G A ) = Z ) | 
| 7 | 5 6 | sylan | |- ( ( R e. RingOps /\ A e. X ) -> ( ( N ` A ) G A ) = Z ) |