Metamath Proof Explorer


Theorem rngocl

Description: Closure of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1
|- G = ( 1st ` R )
ringi.2
|- H = ( 2nd ` R )
ringi.3
|- X = ran G
Assertion rngocl
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X )

Proof

Step Hyp Ref Expression
1 ringi.1
 |-  G = ( 1st ` R )
2 ringi.2
 |-  H = ( 2nd ` R )
3 ringi.3
 |-  X = ran G
4 1 2 3 rngosm
 |-  ( R e. RingOps -> H : ( X X. X ) --> X )
5 fovrn
 |-  ( ( H : ( X X. X ) --> X /\ A e. X /\ B e. X ) -> ( A H B ) e. X )
6 4 5 syl3an1
 |-  ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X )