Metamath Proof Explorer


Theorem rngocom

Description: The addition operation of a ring is commutative. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ringgcl.1
|- G = ( 1st ` R )
ringgcl.2
|- X = ran G
Assertion rngocom
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A G B ) = ( B G A ) )

Proof

Step Hyp Ref Expression
1 ringgcl.1
 |-  G = ( 1st ` R )
2 ringgcl.2
 |-  X = ran G
3 1 rngoablo
 |-  ( R e. RingOps -> G e. AbelOp )
4 2 ablocom
 |-  ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A G B ) = ( B G A ) )
5 3 4 syl3an1
 |-  ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A G B ) = ( B G A ) )