| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnplrnml0.1 |  |-  H = ( 2nd ` R ) | 
						
							| 2 |  | rnplrnml0.2 |  |-  G = ( 1st ` R ) | 
						
							| 3 | 2 | rngogrpo |  |-  ( R e. RingOps -> G e. GrpOp ) | 
						
							| 4 |  | eqid |  |-  ran G = ran G | 
						
							| 5 | 4 | grpofo |  |-  ( G e. GrpOp -> G : ( ran G X. ran G ) -onto-> ran G ) | 
						
							| 6 | 3 5 | syl |  |-  ( R e. RingOps -> G : ( ran G X. ran G ) -onto-> ran G ) | 
						
							| 7 | 2 1 4 | rngosm |  |-  ( R e. RingOps -> H : ( ran G X. ran G ) --> ran G ) | 
						
							| 8 |  | fof |  |-  ( G : ( ran G X. ran G ) -onto-> ran G -> G : ( ran G X. ran G ) --> ran G ) | 
						
							| 9 | 8 | fdmd |  |-  ( G : ( ran G X. ran G ) -onto-> ran G -> dom G = ( ran G X. ran G ) ) | 
						
							| 10 |  | fdm |  |-  ( H : ( ran G X. ran G ) --> ran G -> dom H = ( ran G X. ran G ) ) | 
						
							| 11 |  | eqtr |  |-  ( ( dom G = ( ran G X. ran G ) /\ ( ran G X. ran G ) = dom H ) -> dom G = dom H ) | 
						
							| 12 | 11 | dmeqd |  |-  ( ( dom G = ( ran G X. ran G ) /\ ( ran G X. ran G ) = dom H ) -> dom dom G = dom dom H ) | 
						
							| 13 | 12 | expcom |  |-  ( ( ran G X. ran G ) = dom H -> ( dom G = ( ran G X. ran G ) -> dom dom G = dom dom H ) ) | 
						
							| 14 | 13 | eqcoms |  |-  ( dom H = ( ran G X. ran G ) -> ( dom G = ( ran G X. ran G ) -> dom dom G = dom dom H ) ) | 
						
							| 15 | 10 14 | syl |  |-  ( H : ( ran G X. ran G ) --> ran G -> ( dom G = ( ran G X. ran G ) -> dom dom G = dom dom H ) ) | 
						
							| 16 | 9 15 | syl5com |  |-  ( G : ( ran G X. ran G ) -onto-> ran G -> ( H : ( ran G X. ran G ) --> ran G -> dom dom G = dom dom H ) ) | 
						
							| 17 | 6 7 16 | sylc |  |-  ( R e. RingOps -> dom dom G = dom dom H ) |