Step |
Hyp |
Ref |
Expression |
1 |
|
rnplrnml0.1 |
|- H = ( 2nd ` R ) |
2 |
|
rnplrnml0.2 |
|- G = ( 1st ` R ) |
3 |
2
|
rngogrpo |
|- ( R e. RingOps -> G e. GrpOp ) |
4 |
|
eqid |
|- ran G = ran G |
5 |
4
|
grpofo |
|- ( G e. GrpOp -> G : ( ran G X. ran G ) -onto-> ran G ) |
6 |
3 5
|
syl |
|- ( R e. RingOps -> G : ( ran G X. ran G ) -onto-> ran G ) |
7 |
2 1 4
|
rngosm |
|- ( R e. RingOps -> H : ( ran G X. ran G ) --> ran G ) |
8 |
|
fof |
|- ( G : ( ran G X. ran G ) -onto-> ran G -> G : ( ran G X. ran G ) --> ran G ) |
9 |
8
|
fdmd |
|- ( G : ( ran G X. ran G ) -onto-> ran G -> dom G = ( ran G X. ran G ) ) |
10 |
|
fdm |
|- ( H : ( ran G X. ran G ) --> ran G -> dom H = ( ran G X. ran G ) ) |
11 |
|
eqtr |
|- ( ( dom G = ( ran G X. ran G ) /\ ( ran G X. ran G ) = dom H ) -> dom G = dom H ) |
12 |
11
|
dmeqd |
|- ( ( dom G = ( ran G X. ran G ) /\ ( ran G X. ran G ) = dom H ) -> dom dom G = dom dom H ) |
13 |
12
|
expcom |
|- ( ( ran G X. ran G ) = dom H -> ( dom G = ( ran G X. ran G ) -> dom dom G = dom dom H ) ) |
14 |
13
|
eqcoms |
|- ( dom H = ( ran G X. ran G ) -> ( dom G = ( ran G X. ran G ) -> dom dom G = dom dom H ) ) |
15 |
10 14
|
syl |
|- ( H : ( ran G X. ran G ) --> ran G -> ( dom G = ( ran G X. ran G ) -> dom dom G = dom dom H ) ) |
16 |
9 15
|
syl5com |
|- ( G : ( ran G X. ran G ) -onto-> ran G -> ( H : ( ran G X. ran G ) --> ran G -> dom dom G = dom dom H ) ) |
17 |
6 7 16
|
sylc |
|- ( R e. RingOps -> dom dom G = dom dom H ) |