Description: Closure law for the addition (group) operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringgcl.1 | |- G = ( 1st ` R ) | |
| ringgcl.2 | |- X = ran G | ||
| Assertion | rngogcl | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringgcl.1 | |- G = ( 1st ` R ) | |
| 2 | ringgcl.2 | |- X = ran G | |
| 3 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) | 
| 4 | 2 | grpocl | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) | 
| 5 | 3 4 | syl3an1 | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |