Description: A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ringgrp.1 | |- G = ( 1st ` R ) |
|
Assertion | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp.1 | |- G = ( 1st ` R ) |
|
2 | 1 | rngoablo | |- ( R e. RingOps -> G e. AbelOp ) |
3 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
4 | 2 3 | syl | |- ( R e. RingOps -> G e. GrpOp ) |