Description: A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ringgrp.1 | |- G = ( 1st ` R ) |
|
| Assertion | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp.1 | |- G = ( 1st ` R ) |
|
| 2 | 1 | rngoablo | |- ( R e. RingOps -> G e. AbelOp ) |
| 3 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
| 4 | 2 3 | syl | |- ( R e. RingOps -> G e. GrpOp ) |