| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnghom0.1 |
|- G = ( 1st ` R ) |
| 2 |
|
rnghom0.2 |
|- Z = ( GId ` G ) |
| 3 |
|
rnghom0.3 |
|- J = ( 1st ` S ) |
| 4 |
|
rnghom0.4 |
|- W = ( GId ` J ) |
| 5 |
1
|
rngogrpo |
|- ( R e. RingOps -> G e. GrpOp ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> G e. GrpOp ) |
| 7 |
3
|
rngogrpo |
|- ( S e. RingOps -> J e. GrpOp ) |
| 8 |
7
|
3ad2ant2 |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> J e. GrpOp ) |
| 9 |
1 3
|
rngogrphom |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) |
| 10 |
2 4
|
ghomidOLD |
|- ( ( G e. GrpOp /\ J e. GrpOp /\ F e. ( G GrpOpHom J ) ) -> ( F ` Z ) = W ) |
| 11 |
6 8 9 10
|
syl3anc |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F ` Z ) = W ) |