Metamath Proof Explorer


Theorem rngohomcl

Description: Closure law for a ring homomorphism. (Contributed by Jeff Madsen, 3-Jan-2011)

Ref Expression
Hypotheses rnghomf.1
|- G = ( 1st ` R )
rnghomf.2
|- X = ran G
rnghomf.3
|- J = ( 1st ` S )
rnghomf.4
|- Y = ran J
Assertion rngohomcl
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) /\ A e. X ) -> ( F ` A ) e. Y )

Proof

Step Hyp Ref Expression
1 rnghomf.1
 |-  G = ( 1st ` R )
2 rnghomf.2
 |-  X = ran G
3 rnghomf.3
 |-  J = ( 1st ` S )
4 rnghomf.4
 |-  Y = ran J
5 1 2 3 4 rngohomf
 |-  ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) -> F : X --> Y )
6 5 ffvelrnda
 |-  ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) /\ A e. X ) -> ( F ` A ) e. Y )