Description: Closure law for a ring homomorphism. (Contributed by Jeff Madsen, 3-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghomf.1 | |- G = ( 1st ` R ) |
|
| rnghomf.2 | |- X = ran G |
||
| rnghomf.3 | |- J = ( 1st ` S ) |
||
| rnghomf.4 | |- Y = ran J |
||
| Assertion | rngohomcl | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ A e. X ) -> ( F ` A ) e. Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghomf.1 | |- G = ( 1st ` R ) |
|
| 2 | rnghomf.2 | |- X = ran G |
|
| 3 | rnghomf.3 | |- J = ( 1st ` S ) |
|
| 4 | rnghomf.4 | |- Y = ran J |
|
| 5 | 1 2 3 4 | rngohomf | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) |
| 6 | 5 | ffvelcdmda | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ A e. X ) -> ( F ` A ) e. Y ) |