| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnghomf.1 |
|- G = ( 1st ` R ) |
| 2 |
|
rnghomf.2 |
|- X = ran G |
| 3 |
|
rnghomf.3 |
|- J = ( 1st ` S ) |
| 4 |
|
rnghomf.4 |
|- Y = ran J |
| 5 |
|
eqid |
|- ( 2nd ` R ) = ( 2nd ` R ) |
| 6 |
|
eqid |
|- ( GId ` ( 2nd ` R ) ) = ( GId ` ( 2nd ` R ) ) |
| 7 |
|
eqid |
|- ( 2nd ` S ) = ( 2nd ` S ) |
| 8 |
|
eqid |
|- ( GId ` ( 2nd ` S ) ) = ( GId ` ( 2nd ` S ) ) |
| 9 |
1 5 2 6 3 7 4 8
|
isrngohom |
|- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> ( F : X --> Y /\ ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) ) ) |
| 10 |
9
|
biimpa |
|- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( F : X --> Y /\ ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) ) |
| 11 |
10
|
simp1d |
|- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) |
| 12 |
11
|
3impa |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) |