| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnghommul.1 |
|- G = ( 1st ` R ) |
| 2 |
|
rnghommul.2 |
|- X = ran G |
| 3 |
|
rnghommul.3 |
|- H = ( 2nd ` R ) |
| 4 |
|
rnghommul.4 |
|- K = ( 2nd ` S ) |
| 5 |
|
eqid |
|- ( GId ` H ) = ( GId ` H ) |
| 6 |
|
eqid |
|- ( 1st ` S ) = ( 1st ` S ) |
| 7 |
|
eqid |
|- ran ( 1st ` S ) = ran ( 1st ` S ) |
| 8 |
|
eqid |
|- ( GId ` K ) = ( GId ` K ) |
| 9 |
1 3 2 5 6 4 7 8
|
isrngohom |
|- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> ( F : X --> ran ( 1st ` S ) /\ ( F ` ( GId ` H ) ) = ( GId ` K ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) ) |
| 10 |
9
|
biimpa |
|- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( F : X --> ran ( 1st ` S ) /\ ( F ` ( GId ` H ) ) = ( GId ` K ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) |
| 11 |
10
|
simp3d |
|- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) |
| 12 |
11
|
3impa |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) |
| 13 |
|
simpr |
|- ( ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) -> ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) |
| 14 |
13
|
2ralimi |
|- ( A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) -> A. x e. X A. y e. X ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) |
| 15 |
12 14
|
syl |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. X A. y e. X ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) |
| 16 |
|
fvoveq1 |
|- ( x = A -> ( F ` ( x H y ) ) = ( F ` ( A H y ) ) ) |
| 17 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
| 18 |
17
|
oveq1d |
|- ( x = A -> ( ( F ` x ) K ( F ` y ) ) = ( ( F ` A ) K ( F ` y ) ) ) |
| 19 |
16 18
|
eqeq12d |
|- ( x = A -> ( ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) <-> ( F ` ( A H y ) ) = ( ( F ` A ) K ( F ` y ) ) ) ) |
| 20 |
|
oveq2 |
|- ( y = B -> ( A H y ) = ( A H B ) ) |
| 21 |
20
|
fveq2d |
|- ( y = B -> ( F ` ( A H y ) ) = ( F ` ( A H B ) ) ) |
| 22 |
|
fveq2 |
|- ( y = B -> ( F ` y ) = ( F ` B ) ) |
| 23 |
22
|
oveq2d |
|- ( y = B -> ( ( F ` A ) K ( F ` y ) ) = ( ( F ` A ) K ( F ` B ) ) ) |
| 24 |
21 23
|
eqeq12d |
|- ( y = B -> ( ( F ` ( A H y ) ) = ( ( F ` A ) K ( F ` y ) ) <-> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) ) |
| 25 |
19 24
|
rspc2v |
|- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) ) |
| 26 |
15 25
|
mpan9 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) |