| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringi.1 |  |-  G = ( 1st ` R ) | 
						
							| 2 |  | ringi.2 |  |-  H = ( 2nd ` R ) | 
						
							| 3 |  | ringi.3 |  |-  X = ran G | 
						
							| 4 | 1 2 | opeq12i |  |-  <. G , H >. = <. ( 1st ` R ) , ( 2nd ` R ) >. | 
						
							| 5 |  | relrngo |  |-  Rel RingOps | 
						
							| 6 |  | 1st2nd |  |-  ( ( Rel RingOps /\ R e. RingOps ) -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) | 
						
							| 7 | 5 6 | mpan |  |-  ( R e. RingOps -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) | 
						
							| 8 | 4 7 | eqtr4id |  |-  ( R e. RingOps -> <. G , H >. = R ) | 
						
							| 9 |  | id |  |-  ( R e. RingOps -> R e. RingOps ) | 
						
							| 10 | 8 9 | eqeltrd |  |-  ( R e. RingOps -> <. G , H >. e. RingOps ) | 
						
							| 11 | 2 | fvexi |  |-  H e. _V | 
						
							| 12 | 3 | isrngo |  |-  ( H e. _V -> ( <. G , H >. e. RingOps <-> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ( <. G , H >. e. RingOps <-> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) | 
						
							| 14 | 10 13 | sylib |  |-  ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |