Step |
Hyp |
Ref |
Expression |
1 |
|
ringi.1 |
|- G = ( 1st ` R ) |
2 |
|
ringi.2 |
|- H = ( 2nd ` R ) |
3 |
|
ringi.3 |
|- X = ran G |
4 |
1 2 3
|
rngoi |
|- ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. u e. X A. x e. X A. y e. X ( ( ( u H x ) H y ) = ( u H ( x H y ) ) /\ ( u H ( x G y ) ) = ( ( u H x ) G ( u H y ) ) /\ ( ( u G x ) H y ) = ( ( u H y ) G ( x H y ) ) ) /\ E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) ) ) |
5 |
4
|
simprrd |
|- ( R e. RingOps -> E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |
6 |
|
r19.12 |
|- ( E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) -> A. x e. X E. u e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |
7 |
5 6
|
syl |
|- ( R e. RingOps -> A. x e. X E. u e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |
8 |
|
oveq2 |
|- ( x = A -> ( u H x ) = ( u H A ) ) |
9 |
|
id |
|- ( x = A -> x = A ) |
10 |
8 9
|
eqeq12d |
|- ( x = A -> ( ( u H x ) = x <-> ( u H A ) = A ) ) |
11 |
|
oveq1 |
|- ( x = A -> ( x H u ) = ( A H u ) ) |
12 |
11 9
|
eqeq12d |
|- ( x = A -> ( ( x H u ) = x <-> ( A H u ) = A ) ) |
13 |
10 12
|
anbi12d |
|- ( x = A -> ( ( ( u H x ) = x /\ ( x H u ) = x ) <-> ( ( u H A ) = A /\ ( A H u ) = A ) ) ) |
14 |
13
|
rexbidv |
|- ( x = A -> ( E. u e. X ( ( u H x ) = x /\ ( x H u ) = x ) <-> E. u e. X ( ( u H A ) = A /\ ( A H u ) = A ) ) ) |
15 |
14
|
rspccva |
|- ( ( A. x e. X E. u e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A e. X ) -> E. u e. X ( ( u H A ) = A /\ ( A H u ) = A ) ) |
16 |
7 15
|
sylan |
|- ( ( R e. RingOps /\ A e. X ) -> E. u e. X ( ( u H A ) = A /\ ( A H u ) = A ) ) |