| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringi.1 |  |-  G = ( 1st ` R ) | 
						
							| 2 |  | ringi.2 |  |-  H = ( 2nd ` R ) | 
						
							| 3 |  | ringi.3 |  |-  X = ran G | 
						
							| 4 | 1 2 3 | rngoi |  |-  ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. u e. X A. x e. X A. y e. X ( ( ( u H x ) H y ) = ( u H ( x H y ) ) /\ ( u H ( x G y ) ) = ( ( u H x ) G ( u H y ) ) /\ ( ( u G x ) H y ) = ( ( u H y ) G ( x H y ) ) ) /\ E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) ) ) | 
						
							| 5 | 4 | simprrd |  |-  ( R e. RingOps -> E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) | 
						
							| 6 |  | r19.12 |  |-  ( E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) -> A. x e. X E. u e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( R e. RingOps -> A. x e. X E. u e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) | 
						
							| 8 |  | oveq2 |  |-  ( x = A -> ( u H x ) = ( u H A ) ) | 
						
							| 9 |  | id |  |-  ( x = A -> x = A ) | 
						
							| 10 | 8 9 | eqeq12d |  |-  ( x = A -> ( ( u H x ) = x <-> ( u H A ) = A ) ) | 
						
							| 11 |  | oveq1 |  |-  ( x = A -> ( x H u ) = ( A H u ) ) | 
						
							| 12 | 11 9 | eqeq12d |  |-  ( x = A -> ( ( x H u ) = x <-> ( A H u ) = A ) ) | 
						
							| 13 | 10 12 | anbi12d |  |-  ( x = A -> ( ( ( u H x ) = x /\ ( x H u ) = x ) <-> ( ( u H A ) = A /\ ( A H u ) = A ) ) ) | 
						
							| 14 | 13 | rexbidv |  |-  ( x = A -> ( E. u e. X ( ( u H x ) = x /\ ( x H u ) = x ) <-> E. u e. X ( ( u H A ) = A /\ ( A H u ) = A ) ) ) | 
						
							| 15 | 14 | rspccva |  |-  ( ( A. x e. X E. u e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A e. X ) -> E. u e. X ( ( u H A ) = A /\ ( A H u ) = A ) ) | 
						
							| 16 | 7 15 | sylan |  |-  ( ( R e. RingOps /\ A e. X ) -> E. u e. X ( ( u H A ) = A /\ ( A H u ) = A ) ) |