Step |
Hyp |
Ref |
Expression |
1 |
|
ringi.1 |
|- G = ( 1st ` R ) |
2 |
|
ringi.2 |
|- H = ( 2nd ` R ) |
3 |
|
ringi.3 |
|- X = ran G |
4 |
1 2 3
|
rngoi |
|- ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. u e. X A. x e. X A. y e. X ( ( ( u H x ) H y ) = ( u H ( x H y ) ) /\ ( u H ( x G y ) ) = ( ( u H x ) G ( u H y ) ) /\ ( ( u G x ) H y ) = ( ( u H y ) G ( x H y ) ) ) /\ E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) ) ) |
5 |
4
|
simprrd |
|- ( R e. RingOps -> E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |
6 |
|
simpl |
|- ( ( ( u H x ) = x /\ ( x H u ) = x ) -> ( u H x ) = x ) |
7 |
6
|
ralimi |
|- ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) -> A. x e. X ( u H x ) = x ) |
8 |
|
oveq2 |
|- ( x = y -> ( u H x ) = ( u H y ) ) |
9 |
|
id |
|- ( x = y -> x = y ) |
10 |
8 9
|
eqeq12d |
|- ( x = y -> ( ( u H x ) = x <-> ( u H y ) = y ) ) |
11 |
10
|
rspcv |
|- ( y e. X -> ( A. x e. X ( u H x ) = x -> ( u H y ) = y ) ) |
12 |
7 11
|
syl5 |
|- ( y e. X -> ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) -> ( u H y ) = y ) ) |
13 |
|
simpr |
|- ( ( ( y H x ) = x /\ ( x H y ) = x ) -> ( x H y ) = x ) |
14 |
13
|
ralimi |
|- ( A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) -> A. x e. X ( x H y ) = x ) |
15 |
|
oveq1 |
|- ( x = u -> ( x H y ) = ( u H y ) ) |
16 |
|
id |
|- ( x = u -> x = u ) |
17 |
15 16
|
eqeq12d |
|- ( x = u -> ( ( x H y ) = x <-> ( u H y ) = u ) ) |
18 |
17
|
rspcv |
|- ( u e. X -> ( A. x e. X ( x H y ) = x -> ( u H y ) = u ) ) |
19 |
14 18
|
syl5 |
|- ( u e. X -> ( A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) -> ( u H y ) = u ) ) |
20 |
12 19
|
im2anan9r |
|- ( ( u e. X /\ y e. X ) -> ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> ( ( u H y ) = y /\ ( u H y ) = u ) ) ) |
21 |
|
eqtr2 |
|- ( ( ( u H y ) = y /\ ( u H y ) = u ) -> y = u ) |
22 |
21
|
equcomd |
|- ( ( ( u H y ) = y /\ ( u H y ) = u ) -> u = y ) |
23 |
20 22
|
syl6 |
|- ( ( u e. X /\ y e. X ) -> ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> u = y ) ) |
24 |
23
|
rgen2 |
|- A. u e. X A. y e. X ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> u = y ) |
25 |
|
oveq1 |
|- ( u = y -> ( u H x ) = ( y H x ) ) |
26 |
25
|
eqeq1d |
|- ( u = y -> ( ( u H x ) = x <-> ( y H x ) = x ) ) |
27 |
26
|
ovanraleqv |
|- ( u = y -> ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) <-> A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) ) |
28 |
27
|
reu4 |
|- ( E! u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) <-> ( E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. u e. X A. y e. X ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> u = y ) ) ) |
29 |
5 24 28
|
sylanblrc |
|- ( R e. RingOps -> E! u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |