| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringi.1 |
|- G = ( 1st ` R ) |
| 2 |
|
ringi.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
ringi.3 |
|- X = ran G |
| 4 |
1 2 3
|
rngoi |
|- ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. u e. X A. x e. X A. y e. X ( ( ( u H x ) H y ) = ( u H ( x H y ) ) /\ ( u H ( x G y ) ) = ( ( u H x ) G ( u H y ) ) /\ ( ( u G x ) H y ) = ( ( u H y ) G ( x H y ) ) ) /\ E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) ) ) |
| 5 |
4
|
simprrd |
|- ( R e. RingOps -> E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |
| 6 |
|
simpl |
|- ( ( ( u H x ) = x /\ ( x H u ) = x ) -> ( u H x ) = x ) |
| 7 |
6
|
ralimi |
|- ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) -> A. x e. X ( u H x ) = x ) |
| 8 |
|
oveq2 |
|- ( x = y -> ( u H x ) = ( u H y ) ) |
| 9 |
|
id |
|- ( x = y -> x = y ) |
| 10 |
8 9
|
eqeq12d |
|- ( x = y -> ( ( u H x ) = x <-> ( u H y ) = y ) ) |
| 11 |
10
|
rspcv |
|- ( y e. X -> ( A. x e. X ( u H x ) = x -> ( u H y ) = y ) ) |
| 12 |
7 11
|
syl5 |
|- ( y e. X -> ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) -> ( u H y ) = y ) ) |
| 13 |
|
simpr |
|- ( ( ( y H x ) = x /\ ( x H y ) = x ) -> ( x H y ) = x ) |
| 14 |
13
|
ralimi |
|- ( A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) -> A. x e. X ( x H y ) = x ) |
| 15 |
|
oveq1 |
|- ( x = u -> ( x H y ) = ( u H y ) ) |
| 16 |
|
id |
|- ( x = u -> x = u ) |
| 17 |
15 16
|
eqeq12d |
|- ( x = u -> ( ( x H y ) = x <-> ( u H y ) = u ) ) |
| 18 |
17
|
rspcv |
|- ( u e. X -> ( A. x e. X ( x H y ) = x -> ( u H y ) = u ) ) |
| 19 |
14 18
|
syl5 |
|- ( u e. X -> ( A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) -> ( u H y ) = u ) ) |
| 20 |
12 19
|
im2anan9r |
|- ( ( u e. X /\ y e. X ) -> ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> ( ( u H y ) = y /\ ( u H y ) = u ) ) ) |
| 21 |
|
eqtr2 |
|- ( ( ( u H y ) = y /\ ( u H y ) = u ) -> y = u ) |
| 22 |
21
|
equcomd |
|- ( ( ( u H y ) = y /\ ( u H y ) = u ) -> u = y ) |
| 23 |
20 22
|
syl6 |
|- ( ( u e. X /\ y e. X ) -> ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> u = y ) ) |
| 24 |
23
|
rgen2 |
|- A. u e. X A. y e. X ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> u = y ) |
| 25 |
|
oveq1 |
|- ( u = y -> ( u H x ) = ( y H x ) ) |
| 26 |
25
|
eqeq1d |
|- ( u = y -> ( ( u H x ) = x <-> ( y H x ) = x ) ) |
| 27 |
26
|
ovanraleqv |
|- ( u = y -> ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) <-> A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) ) |
| 28 |
27
|
reu4 |
|- ( E! u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) <-> ( E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. u e. X A. y e. X ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> u = y ) ) ) |
| 29 |
5 24 28
|
sylanblrc |
|- ( R e. RingOps -> E! u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |