| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringi.1 |  |-  G = ( 1st ` R ) | 
						
							| 2 |  | ringi.2 |  |-  H = ( 2nd ` R ) | 
						
							| 3 |  | ringi.3 |  |-  X = ran G | 
						
							| 4 | 1 2 3 | rngoi |  |-  ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. u e. X A. x e. X A. y e. X ( ( ( u H x ) H y ) = ( u H ( x H y ) ) /\ ( u H ( x G y ) ) = ( ( u H x ) G ( u H y ) ) /\ ( ( u G x ) H y ) = ( ( u H y ) G ( x H y ) ) ) /\ E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) ) ) | 
						
							| 5 | 4 | simprrd |  |-  ( R e. RingOps -> E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) | 
						
							| 6 |  | simpl |  |-  ( ( ( u H x ) = x /\ ( x H u ) = x ) -> ( u H x ) = x ) | 
						
							| 7 | 6 | ralimi |  |-  ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) -> A. x e. X ( u H x ) = x ) | 
						
							| 8 |  | oveq2 |  |-  ( x = y -> ( u H x ) = ( u H y ) ) | 
						
							| 9 |  | id |  |-  ( x = y -> x = y ) | 
						
							| 10 | 8 9 | eqeq12d |  |-  ( x = y -> ( ( u H x ) = x <-> ( u H y ) = y ) ) | 
						
							| 11 | 10 | rspcv |  |-  ( y e. X -> ( A. x e. X ( u H x ) = x -> ( u H y ) = y ) ) | 
						
							| 12 | 7 11 | syl5 |  |-  ( y e. X -> ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) -> ( u H y ) = y ) ) | 
						
							| 13 |  | simpr |  |-  ( ( ( y H x ) = x /\ ( x H y ) = x ) -> ( x H y ) = x ) | 
						
							| 14 | 13 | ralimi |  |-  ( A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) -> A. x e. X ( x H y ) = x ) | 
						
							| 15 |  | oveq1 |  |-  ( x = u -> ( x H y ) = ( u H y ) ) | 
						
							| 16 |  | id |  |-  ( x = u -> x = u ) | 
						
							| 17 | 15 16 | eqeq12d |  |-  ( x = u -> ( ( x H y ) = x <-> ( u H y ) = u ) ) | 
						
							| 18 | 17 | rspcv |  |-  ( u e. X -> ( A. x e. X ( x H y ) = x -> ( u H y ) = u ) ) | 
						
							| 19 | 14 18 | syl5 |  |-  ( u e. X -> ( A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) -> ( u H y ) = u ) ) | 
						
							| 20 | 12 19 | im2anan9r |  |-  ( ( u e. X /\ y e. X ) -> ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> ( ( u H y ) = y /\ ( u H y ) = u ) ) ) | 
						
							| 21 |  | eqtr2 |  |-  ( ( ( u H y ) = y /\ ( u H y ) = u ) -> y = u ) | 
						
							| 22 | 21 | equcomd |  |-  ( ( ( u H y ) = y /\ ( u H y ) = u ) -> u = y ) | 
						
							| 23 | 20 22 | syl6 |  |-  ( ( u e. X /\ y e. X ) -> ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> u = y ) ) | 
						
							| 24 | 23 | rgen2 |  |-  A. u e. X A. y e. X ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> u = y ) | 
						
							| 25 |  | oveq1 |  |-  ( u = y -> ( u H x ) = ( y H x ) ) | 
						
							| 26 | 25 | eqeq1d |  |-  ( u = y -> ( ( u H x ) = x <-> ( y H x ) = x ) ) | 
						
							| 27 | 26 | ovanraleqv |  |-  ( u = y -> ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) <-> A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) ) | 
						
							| 28 | 27 | reu4 |  |-  ( E! u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) <-> ( E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. u e. X A. y e. X ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> u = y ) ) ) | 
						
							| 29 | 5 24 28 | sylanblrc |  |-  ( R e. RingOps -> E! u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |