Metamath Proof Explorer


Theorem rngoiso1o

Description: A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses rngisoval.1
|- G = ( 1st ` R )
rngisoval.2
|- X = ran G
rngisoval.3
|- J = ( 1st ` S )
rngisoval.4
|- Y = ran J
Assertion rngoiso1o
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngIso S ) ) -> F : X -1-1-onto-> Y )

Proof

Step Hyp Ref Expression
1 rngisoval.1
 |-  G = ( 1st ` R )
2 rngisoval.2
 |-  X = ran G
3 rngisoval.3
 |-  J = ( 1st ` S )
4 rngisoval.4
 |-  Y = ran J
5 1 2 3 4 isrngoiso
 |-  ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : X -1-1-onto-> Y ) ) )
6 5 simplbda
 |-  ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RngIso S ) ) -> F : X -1-1-onto-> Y )
7 6 3impa
 |-  ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngIso S ) ) -> F : X -1-1-onto-> Y )