Description: A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngisoval.1 | |- G = ( 1st ` R ) |
|
| rngisoval.2 | |- X = ran G |
||
| rngisoval.3 | |- J = ( 1st ` S ) |
||
| rngisoval.4 | |- Y = ran J |
||
| Assertion | rngoiso1o | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F : X -1-1-onto-> Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngisoval.1 | |- G = ( 1st ` R ) |
|
| 2 | rngisoval.2 | |- X = ran G |
|
| 3 | rngisoval.3 | |- J = ( 1st ` S ) |
|
| 4 | rngisoval.4 | |- Y = ran J |
|
| 5 | 1 2 3 4 | isrngoiso | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> ( F e. ( R RingOpsHom S ) /\ F : X -1-1-onto-> Y ) ) ) |
| 6 | 5 | simplbda | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F : X -1-1-onto-> Y ) |
| 7 | 6 | 3impa | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F : X -1-1-onto-> Y ) |