Description: A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngisoval.1 | |- G = ( 1st ` R ) |
|
rngisoval.2 | |- X = ran G |
||
rngisoval.3 | |- J = ( 1st ` S ) |
||
rngisoval.4 | |- Y = ran J |
||
Assertion | rngoiso1o | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngIso S ) ) -> F : X -1-1-onto-> Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngisoval.1 | |- G = ( 1st ` R ) |
|
2 | rngisoval.2 | |- X = ran G |
|
3 | rngisoval.3 | |- J = ( 1st ` S ) |
|
4 | rngisoval.4 | |- Y = ran J |
|
5 | 1 2 3 4 | isrngoiso | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : X -1-1-onto-> Y ) ) ) |
6 | 5 | simplbda | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RngIso S ) ) -> F : X -1-1-onto-> Y ) |
7 | 6 | 3impa | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngIso S ) ) -> F : X -1-1-onto-> Y ) |