Step |
Hyp |
Ref |
Expression |
1 |
|
rngoisohom |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngIso S ) ) -> F e. ( R RngHom S ) ) |
2 |
1
|
3expa |
|- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RngIso S ) ) -> F e. ( R RngHom S ) ) |
3 |
2
|
3adantl3 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RngIso S ) ) -> F e. ( R RngHom S ) ) |
4 |
|
rngoisohom |
|- ( ( S e. RingOps /\ T e. RingOps /\ G e. ( S RngIso T ) ) -> G e. ( S RngHom T ) ) |
5 |
4
|
3expa |
|- ( ( ( S e. RingOps /\ T e. RingOps ) /\ G e. ( S RngIso T ) ) -> G e. ( S RngHom T ) ) |
6 |
5
|
3adantl1 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ G e. ( S RngIso T ) ) -> G e. ( S RngHom T ) ) |
7 |
3 6
|
anim12dan |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RngIso S ) /\ G e. ( S RngIso T ) ) ) -> ( F e. ( R RngHom S ) /\ G e. ( S RngHom T ) ) ) |
8 |
|
rngohomco |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RngHom S ) /\ G e. ( S RngHom T ) ) ) -> ( G o. F ) e. ( R RngHom T ) ) |
9 |
7 8
|
syldan |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RngIso S ) /\ G e. ( S RngIso T ) ) ) -> ( G o. F ) e. ( R RngHom T ) ) |
10 |
|
eqid |
|- ( 1st ` S ) = ( 1st ` S ) |
11 |
|
eqid |
|- ran ( 1st ` S ) = ran ( 1st ` S ) |
12 |
|
eqid |
|- ( 1st ` T ) = ( 1st ` T ) |
13 |
|
eqid |
|- ran ( 1st ` T ) = ran ( 1st ` T ) |
14 |
10 11 12 13
|
rngoiso1o |
|- ( ( S e. RingOps /\ T e. RingOps /\ G e. ( S RngIso T ) ) -> G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) ) |
15 |
14
|
3expa |
|- ( ( ( S e. RingOps /\ T e. RingOps ) /\ G e. ( S RngIso T ) ) -> G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) ) |
16 |
15
|
3adantl1 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ G e. ( S RngIso T ) ) -> G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) ) |
17 |
16
|
adantrl |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RngIso S ) /\ G e. ( S RngIso T ) ) ) -> G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) ) |
18 |
|
eqid |
|- ( 1st ` R ) = ( 1st ` R ) |
19 |
|
eqid |
|- ran ( 1st ` R ) = ran ( 1st ` R ) |
20 |
18 19 10 11
|
rngoiso1o |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngIso S ) ) -> F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) |
21 |
20
|
3expa |
|- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RngIso S ) ) -> F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) |
22 |
21
|
3adantl3 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RngIso S ) ) -> F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) |
23 |
22
|
adantrr |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RngIso S ) /\ G e. ( S RngIso T ) ) ) -> F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) |
24 |
|
f1oco |
|- ( ( G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) /\ F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) -> ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) |
25 |
17 23 24
|
syl2anc |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RngIso S ) /\ G e. ( S RngIso T ) ) ) -> ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) |
26 |
18 19 12 13
|
isrngoiso |
|- ( ( R e. RingOps /\ T e. RingOps ) -> ( ( G o. F ) e. ( R RngIso T ) <-> ( ( G o. F ) e. ( R RngHom T ) /\ ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) ) ) |
27 |
26
|
3adant2 |
|- ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) -> ( ( G o. F ) e. ( R RngIso T ) <-> ( ( G o. F ) e. ( R RngHom T ) /\ ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) ) ) |
28 |
27
|
adantr |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RngIso S ) /\ G e. ( S RngIso T ) ) ) -> ( ( G o. F ) e. ( R RngIso T ) <-> ( ( G o. F ) e. ( R RngHom T ) /\ ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) ) ) |
29 |
9 25 28
|
mpbir2and |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RngIso S ) /\ G e. ( S RngIso T ) ) ) -> ( G o. F ) e. ( R RngIso T ) ) |