| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngoisohom |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) |
| 2 |
1
|
3expa |
|- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) |
| 3 |
2
|
3adantl3 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) |
| 4 |
|
rngoisohom |
|- ( ( S e. RingOps /\ T e. RingOps /\ G e. ( S RingOpsIso T ) ) -> G e. ( S RingOpsHom T ) ) |
| 5 |
4
|
3expa |
|- ( ( ( S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsIso T ) ) -> G e. ( S RingOpsHom T ) ) |
| 6 |
5
|
3adantl1 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsIso T ) ) -> G e. ( S RingOpsHom T ) ) |
| 7 |
3 6
|
anim12dan |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) |
| 8 |
|
rngohomco |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( G o. F ) e. ( R RingOpsHom T ) ) |
| 9 |
7 8
|
syldan |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> ( G o. F ) e. ( R RingOpsHom T ) ) |
| 10 |
|
eqid |
|- ( 1st ` S ) = ( 1st ` S ) |
| 11 |
|
eqid |
|- ran ( 1st ` S ) = ran ( 1st ` S ) |
| 12 |
|
eqid |
|- ( 1st ` T ) = ( 1st ` T ) |
| 13 |
|
eqid |
|- ran ( 1st ` T ) = ran ( 1st ` T ) |
| 14 |
10 11 12 13
|
rngoiso1o |
|- ( ( S e. RingOps /\ T e. RingOps /\ G e. ( S RingOpsIso T ) ) -> G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) ) |
| 15 |
14
|
3expa |
|- ( ( ( S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsIso T ) ) -> G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) ) |
| 16 |
15
|
3adantl1 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsIso T ) ) -> G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) ) |
| 17 |
16
|
adantrl |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) ) |
| 18 |
|
eqid |
|- ( 1st ` R ) = ( 1st ` R ) |
| 19 |
|
eqid |
|- ran ( 1st ` R ) = ran ( 1st ` R ) |
| 20 |
18 19 10 11
|
rngoiso1o |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) |
| 21 |
20
|
3expa |
|- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) |
| 22 |
21
|
3adantl3 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) |
| 23 |
22
|
adantrr |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) |
| 24 |
|
f1oco |
|- ( ( G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) /\ F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) -> ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) |
| 25 |
17 23 24
|
syl2anc |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) |
| 26 |
18 19 12 13
|
isrngoiso |
|- ( ( R e. RingOps /\ T e. RingOps ) -> ( ( G o. F ) e. ( R RingOpsIso T ) <-> ( ( G o. F ) e. ( R RingOpsHom T ) /\ ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) ) ) |
| 27 |
26
|
3adant2 |
|- ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) -> ( ( G o. F ) e. ( R RingOpsIso T ) <-> ( ( G o. F ) e. ( R RingOpsHom T ) /\ ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) ) ) |
| 28 |
27
|
adantr |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> ( ( G o. F ) e. ( R RingOpsIso T ) <-> ( ( G o. F ) e. ( R RingOpsHom T ) /\ ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) ) ) |
| 29 |
9 25 28
|
mpbir2and |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> ( G o. F ) e. ( R RingOpsIso T ) ) |