| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngkerinj.1 |  |-  G = ( 1st ` R ) | 
						
							| 2 |  | rngkerinj.2 |  |-  X = ran G | 
						
							| 3 |  | rngkerinj.3 |  |-  W = ( GId ` G ) | 
						
							| 4 |  | rngkerinj.4 |  |-  J = ( 1st ` S ) | 
						
							| 5 |  | rngkerinj.5 |  |-  Y = ran J | 
						
							| 6 |  | rngkerinj.6 |  |-  Z = ( GId ` J ) | 
						
							| 7 |  | eqid |  |-  ( 1st ` R ) = ( 1st ` R ) | 
						
							| 8 | 7 | rngogrpo |  |-  ( R e. RingOps -> ( 1st ` R ) e. GrpOp ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( 1st ` R ) e. GrpOp ) | 
						
							| 10 |  | eqid |  |-  ( 1st ` S ) = ( 1st ` S ) | 
						
							| 11 | 10 | rngogrpo |  |-  ( S e. RingOps -> ( 1st ` S ) e. GrpOp ) | 
						
							| 12 | 11 | 3ad2ant2 |  |-  ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( 1st ` S ) e. GrpOp ) | 
						
							| 13 | 7 10 | rngogrphom |  |-  ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( ( 1st ` R ) GrpOpHom ( 1st ` S ) ) ) | 
						
							| 14 | 1 | rneqi |  |-  ran G = ran ( 1st ` R ) | 
						
							| 15 | 2 14 | eqtri |  |-  X = ran ( 1st ` R ) | 
						
							| 16 | 1 | fveq2i |  |-  ( GId ` G ) = ( GId ` ( 1st ` R ) ) | 
						
							| 17 | 3 16 | eqtri |  |-  W = ( GId ` ( 1st ` R ) ) | 
						
							| 18 | 4 | rneqi |  |-  ran J = ran ( 1st ` S ) | 
						
							| 19 | 5 18 | eqtri |  |-  Y = ran ( 1st ` S ) | 
						
							| 20 | 4 | fveq2i |  |-  ( GId ` J ) = ( GId ` ( 1st ` S ) ) | 
						
							| 21 | 6 20 | eqtri |  |-  Z = ( GId ` ( 1st ` S ) ) | 
						
							| 22 | 15 17 19 21 | grpokerinj |  |-  ( ( ( 1st ` R ) e. GrpOp /\ ( 1st ` S ) e. GrpOp /\ F e. ( ( 1st ` R ) GrpOpHom ( 1st ` S ) ) ) -> ( F : X -1-1-> Y <-> ( `' F " { Z } ) = { W } ) ) | 
						
							| 23 | 9 12 13 22 | syl3anc |  |-  ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F : X -1-1-> Y <-> ( `' F " { Z } ) = { W } ) ) |