Description: Left cancellation law for the addition operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringgcl.1 | |- G = ( 1st ` R )  | 
					|
| ringgcl.2 | |- X = ran G  | 
					||
| Assertion | rngolcan | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( C G A ) = ( C G B ) <-> A = B ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringgcl.1 | |- G = ( 1st ` R )  | 
						|
| 2 | ringgcl.2 | |- X = ran G  | 
						|
| 3 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp )  | 
						
| 4 | 2 | grpolcan | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( C G A ) = ( C G B ) <-> A = B ) )  | 
						
| 5 | 3 4 | sylan | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( C G A ) = ( C G B ) <-> A = B ) )  |