| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringlz.1 |  |-  Z = ( GId ` G ) | 
						
							| 2 |  | ringlz.2 |  |-  X = ran G | 
						
							| 3 |  | ringlz.3 |  |-  G = ( 1st ` R ) | 
						
							| 4 |  | ringlz.4 |  |-  H = ( 2nd ` R ) | 
						
							| 5 | 3 | rngogrpo |  |-  ( R e. RingOps -> G e. GrpOp ) | 
						
							| 6 | 2 1 | grpoidcl |  |-  ( G e. GrpOp -> Z e. X ) | 
						
							| 7 | 2 1 | grpolid |  |-  ( ( G e. GrpOp /\ Z e. X ) -> ( Z G Z ) = Z ) | 
						
							| 8 | 5 6 7 | syl2anc2 |  |-  ( R e. RingOps -> ( Z G Z ) = Z ) | 
						
							| 9 | 8 | adantr |  |-  ( ( R e. RingOps /\ A e. X ) -> ( Z G Z ) = Z ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( R e. RingOps /\ A e. X ) -> ( ( Z G Z ) H A ) = ( Z H A ) ) | 
						
							| 11 | 3 2 1 | rngo0cl |  |-  ( R e. RingOps -> Z e. X ) | 
						
							| 12 | 11 | adantr |  |-  ( ( R e. RingOps /\ A e. X ) -> Z e. X ) | 
						
							| 13 |  | simpr |  |-  ( ( R e. RingOps /\ A e. X ) -> A e. X ) | 
						
							| 14 | 12 12 13 | 3jca |  |-  ( ( R e. RingOps /\ A e. X ) -> ( Z e. X /\ Z e. X /\ A e. X ) ) | 
						
							| 15 | 3 4 2 | rngodir |  |-  ( ( R e. RingOps /\ ( Z e. X /\ Z e. X /\ A e. X ) ) -> ( ( Z G Z ) H A ) = ( ( Z H A ) G ( Z H A ) ) ) | 
						
							| 16 | 14 15 | syldan |  |-  ( ( R e. RingOps /\ A e. X ) -> ( ( Z G Z ) H A ) = ( ( Z H A ) G ( Z H A ) ) ) | 
						
							| 17 | 5 | adantr |  |-  ( ( R e. RingOps /\ A e. X ) -> G e. GrpOp ) | 
						
							| 18 |  | simpl |  |-  ( ( R e. RingOps /\ A e. X ) -> R e. RingOps ) | 
						
							| 19 | 3 4 2 | rngocl |  |-  ( ( R e. RingOps /\ Z e. X /\ A e. X ) -> ( Z H A ) e. X ) | 
						
							| 20 | 18 12 13 19 | syl3anc |  |-  ( ( R e. RingOps /\ A e. X ) -> ( Z H A ) e. X ) | 
						
							| 21 | 2 1 | grporid |  |-  ( ( G e. GrpOp /\ ( Z H A ) e. X ) -> ( ( Z H A ) G Z ) = ( Z H A ) ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ( G e. GrpOp /\ ( Z H A ) e. X ) -> ( Z H A ) = ( ( Z H A ) G Z ) ) | 
						
							| 23 | 17 20 22 | syl2anc |  |-  ( ( R e. RingOps /\ A e. X ) -> ( Z H A ) = ( ( Z H A ) G Z ) ) | 
						
							| 24 | 10 16 23 | 3eqtr3d |  |-  ( ( R e. RingOps /\ A e. X ) -> ( ( Z H A ) G ( Z H A ) ) = ( ( Z H A ) G Z ) ) | 
						
							| 25 | 2 | grpolcan |  |-  ( ( G e. GrpOp /\ ( ( Z H A ) e. X /\ Z e. X /\ ( Z H A ) e. X ) ) -> ( ( ( Z H A ) G ( Z H A ) ) = ( ( Z H A ) G Z ) <-> ( Z H A ) = Z ) ) | 
						
							| 26 | 17 20 12 20 25 | syl13anc |  |-  ( ( R e. RingOps /\ A e. X ) -> ( ( ( Z H A ) G ( Z H A ) ) = ( ( Z H A ) G Z ) <-> ( Z H A ) = Z ) ) | 
						
							| 27 | 24 26 | mpbid |  |-  ( ( R e. RingOps /\ A e. X ) -> ( Z H A ) = Z ) |