| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unmnd.1 |  |-  H = ( 2nd ` R ) | 
						
							| 2 |  | eqid |  |-  ( 1st ` R ) = ( 1st ` R ) | 
						
							| 3 |  | eqid |  |-  ran ( 1st ` R ) = ran ( 1st ` R ) | 
						
							| 4 | 2 1 3 | rngosm |  |-  ( R e. RingOps -> H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) ) | 
						
							| 5 | 2 1 3 | rngoass |  |-  ( ( R e. RingOps /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) /\ z e. ran ( 1st ` R ) ) ) -> ( ( x H y ) H z ) = ( x H ( y H z ) ) ) | 
						
							| 6 | 5 | ralrimivvva |  |-  ( R e. RingOps -> A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) ) | 
						
							| 7 | 2 1 3 | rngoi |  |-  ( R e. RingOps -> ( ( ( 1st ` R ) e. AbelOp /\ H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) ) /\ ( A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y ( 1st ` R ) z ) ) = ( ( x H y ) ( 1st ` R ) ( x H z ) ) /\ ( ( x ( 1st ` R ) y ) H z ) = ( ( x H z ) ( 1st ` R ) ( y H z ) ) ) /\ E. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) | 
						
							| 8 | 7 | simprrd |  |-  ( R e. RingOps -> E. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) | 
						
							| 9 | 1 2 | rngorn1 |  |-  ( R e. RingOps -> ran ( 1st ` R ) = dom dom H ) | 
						
							| 10 |  | xpid11 |  |-  ( ( dom dom H X. dom dom H ) = ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) <-> dom dom H = ran ( 1st ` R ) ) | 
						
							| 11 | 10 | biimpri |  |-  ( dom dom H = ran ( 1st ` R ) -> ( dom dom H X. dom dom H ) = ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) ) | 
						
							| 12 |  | feq23 |  |-  ( ( ( dom dom H X. dom dom H ) = ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) /\ dom dom H = ran ( 1st ` R ) ) -> ( H : ( dom dom H X. dom dom H ) --> dom dom H <-> H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) ) ) | 
						
							| 13 | 11 12 | mpancom |  |-  ( dom dom H = ran ( 1st ` R ) -> ( H : ( dom dom H X. dom dom H ) --> dom dom H <-> H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) ) ) | 
						
							| 14 |  | raleq |  |-  ( dom dom H = ran ( 1st ` R ) -> ( A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) <-> A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) ) ) | 
						
							| 15 | 14 | raleqbi1dv |  |-  ( dom dom H = ran ( 1st ` R ) -> ( A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) <-> A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) ) ) | 
						
							| 16 | 15 | raleqbi1dv |  |-  ( dom dom H = ran ( 1st ` R ) -> ( A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) <-> A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) ) ) | 
						
							| 17 |  | raleq |  |-  ( dom dom H = ran ( 1st ` R ) -> ( A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) <-> A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) ) | 
						
							| 18 | 17 | rexeqbi1dv |  |-  ( dom dom H = ran ( 1st ` R ) -> ( E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) <-> E. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) ) | 
						
							| 19 | 13 16 18 | 3anbi123d |  |-  ( dom dom H = ran ( 1st ` R ) -> ( ( H : ( dom dom H X. dom dom H ) --> dom dom H /\ A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) ) <-> ( H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) /\ A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) | 
						
							| 20 | 19 | eqcoms |  |-  ( ran ( 1st ` R ) = dom dom H -> ( ( H : ( dom dom H X. dom dom H ) --> dom dom H /\ A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) ) <-> ( H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) /\ A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) | 
						
							| 21 | 9 20 | syl |  |-  ( R e. RingOps -> ( ( H : ( dom dom H X. dom dom H ) --> dom dom H /\ A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) ) <-> ( H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) /\ A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) | 
						
							| 22 | 4 6 8 21 | mpbir3and |  |-  ( R e. RingOps -> ( H : ( dom dom H X. dom dom H ) --> dom dom H /\ A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) ) ) | 
						
							| 23 |  | fvex |  |-  ( 2nd ` R ) e. _V | 
						
							| 24 |  | eleq1 |  |-  ( H = ( 2nd ` R ) -> ( H e. _V <-> ( 2nd ` R ) e. _V ) ) | 
						
							| 25 | 23 24 | mpbiri |  |-  ( H = ( 2nd ` R ) -> H e. _V ) | 
						
							| 26 |  | eqid |  |-  dom dom H = dom dom H | 
						
							| 27 | 26 | ismndo1 |  |-  ( H e. _V -> ( H e. MndOp <-> ( H : ( dom dom H X. dom dom H ) --> dom dom H /\ A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) | 
						
							| 28 | 1 25 27 | mp2b |  |-  ( H e. MndOp <-> ( H : ( dom dom H X. dom dom H ) --> dom dom H /\ A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) ) ) | 
						
							| 29 | 22 28 | sylibr |  |-  ( R e. RingOps -> H e. MndOp ) |