Metamath Proof Explorer


Theorem rngonegcl

Description: A ring is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses ringnegcl.1
|- G = ( 1st ` R )
ringnegcl.2
|- X = ran G
ringnegcl.3
|- N = ( inv ` G )
Assertion rngonegcl
|- ( ( R e. RingOps /\ A e. X ) -> ( N ` A ) e. X )

Proof

Step Hyp Ref Expression
1 ringnegcl.1
 |-  G = ( 1st ` R )
2 ringnegcl.2
 |-  X = ran G
3 ringnegcl.3
 |-  N = ( inv ` G )
4 1 rngogrpo
 |-  ( R e. RingOps -> G e. GrpOp )
5 2 3 grpoinvcl
 |-  ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X )
6 4 5 sylan
 |-  ( ( R e. RingOps /\ A e. X ) -> ( N ` A ) e. X )