| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringneg.1 |
|- G = ( 1st ` R ) |
| 2 |
|
ringneg.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
ringneg.3 |
|- X = ran G |
| 4 |
|
ringneg.4 |
|- N = ( inv ` G ) |
| 5 |
|
ringneg.5 |
|- U = ( GId ` H ) |
| 6 |
1
|
rneqi |
|- ran G = ran ( 1st ` R ) |
| 7 |
3 6
|
eqtri |
|- X = ran ( 1st ` R ) |
| 8 |
7 2 5
|
rngo1cl |
|- ( R e. RingOps -> U e. X ) |
| 9 |
1 3 4
|
rngonegcl |
|- ( ( R e. RingOps /\ U e. X ) -> ( N ` U ) e. X ) |
| 10 |
8 9
|
mpdan |
|- ( R e. RingOps -> ( N ` U ) e. X ) |
| 11 |
8 10
|
jca |
|- ( R e. RingOps -> ( U e. X /\ ( N ` U ) e. X ) ) |
| 12 |
1 2 3
|
rngodir |
|- ( ( R e. RingOps /\ ( U e. X /\ ( N ` U ) e. X /\ A e. X ) ) -> ( ( U G ( N ` U ) ) H A ) = ( ( U H A ) G ( ( N ` U ) H A ) ) ) |
| 13 |
12
|
3exp2 |
|- ( R e. RingOps -> ( U e. X -> ( ( N ` U ) e. X -> ( A e. X -> ( ( U G ( N ` U ) ) H A ) = ( ( U H A ) G ( ( N ` U ) H A ) ) ) ) ) ) |
| 14 |
13
|
imp42 |
|- ( ( ( R e. RingOps /\ ( U e. X /\ ( N ` U ) e. X ) ) /\ A e. X ) -> ( ( U G ( N ` U ) ) H A ) = ( ( U H A ) G ( ( N ` U ) H A ) ) ) |
| 15 |
14
|
an32s |
|- ( ( ( R e. RingOps /\ A e. X ) /\ ( U e. X /\ ( N ` U ) e. X ) ) -> ( ( U G ( N ` U ) ) H A ) = ( ( U H A ) G ( ( N ` U ) H A ) ) ) |
| 16 |
11 15
|
mpidan |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( U G ( N ` U ) ) H A ) = ( ( U H A ) G ( ( N ` U ) H A ) ) ) |
| 17 |
|
eqid |
|- ( GId ` G ) = ( GId ` G ) |
| 18 |
1 3 4 17
|
rngoaddneg1 |
|- ( ( R e. RingOps /\ U e. X ) -> ( U G ( N ` U ) ) = ( GId ` G ) ) |
| 19 |
8 18
|
mpdan |
|- ( R e. RingOps -> ( U G ( N ` U ) ) = ( GId ` G ) ) |
| 20 |
19
|
adantr |
|- ( ( R e. RingOps /\ A e. X ) -> ( U G ( N ` U ) ) = ( GId ` G ) ) |
| 21 |
20
|
oveq1d |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( U G ( N ` U ) ) H A ) = ( ( GId ` G ) H A ) ) |
| 22 |
17 3 1 2
|
rngolz |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( GId ` G ) H A ) = ( GId ` G ) ) |
| 23 |
21 22
|
eqtrd |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( U G ( N ` U ) ) H A ) = ( GId ` G ) ) |
| 24 |
2 7 5
|
rngolidm |
|- ( ( R e. RingOps /\ A e. X ) -> ( U H A ) = A ) |
| 25 |
24
|
oveq1d |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( U H A ) G ( ( N ` U ) H A ) ) = ( A G ( ( N ` U ) H A ) ) ) |
| 26 |
16 23 25
|
3eqtr3rd |
|- ( ( R e. RingOps /\ A e. X ) -> ( A G ( ( N ` U ) H A ) ) = ( GId ` G ) ) |
| 27 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ ( N ` U ) e. X /\ A e. X ) -> ( ( N ` U ) H A ) e. X ) |
| 28 |
27
|
3expa |
|- ( ( ( R e. RingOps /\ ( N ` U ) e. X ) /\ A e. X ) -> ( ( N ` U ) H A ) e. X ) |
| 29 |
28
|
an32s |
|- ( ( ( R e. RingOps /\ A e. X ) /\ ( N ` U ) e. X ) -> ( ( N ` U ) H A ) e. X ) |
| 30 |
10 29
|
mpidan |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( N ` U ) H A ) e. X ) |
| 31 |
1
|
rngogrpo |
|- ( R e. RingOps -> G e. GrpOp ) |
| 32 |
3 17 4
|
grpoinvid1 |
|- ( ( G e. GrpOp /\ A e. X /\ ( ( N ` U ) H A ) e. X ) -> ( ( N ` A ) = ( ( N ` U ) H A ) <-> ( A G ( ( N ` U ) H A ) ) = ( GId ` G ) ) ) |
| 33 |
31 32
|
syl3an1 |
|- ( ( R e. RingOps /\ A e. X /\ ( ( N ` U ) H A ) e. X ) -> ( ( N ` A ) = ( ( N ` U ) H A ) <-> ( A G ( ( N ` U ) H A ) ) = ( GId ` G ) ) ) |
| 34 |
30 33
|
mpd3an3 |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( N ` A ) = ( ( N ` U ) H A ) <-> ( A G ( ( N ` U ) H A ) ) = ( GId ` G ) ) ) |
| 35 |
26 34
|
mpbird |
|- ( ( R e. RingOps /\ A e. X ) -> ( N ` A ) = ( ( N ` U ) H A ) ) |