| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringneg.1 |  |-  G = ( 1st ` R ) | 
						
							| 2 |  | ringneg.2 |  |-  H = ( 2nd ` R ) | 
						
							| 3 |  | ringneg.3 |  |-  X = ran G | 
						
							| 4 |  | ringneg.4 |  |-  N = ( inv ` G ) | 
						
							| 5 |  | ringneg.5 |  |-  U = ( GId ` H ) | 
						
							| 6 | 1 | rneqi |  |-  ran G = ran ( 1st ` R ) | 
						
							| 7 | 3 6 | eqtri |  |-  X = ran ( 1st ` R ) | 
						
							| 8 | 7 2 5 | rngo1cl |  |-  ( R e. RingOps -> U e. X ) | 
						
							| 9 | 1 3 4 | rngonegcl |  |-  ( ( R e. RingOps /\ U e. X ) -> ( N ` U ) e. X ) | 
						
							| 10 | 8 9 | mpdan |  |-  ( R e. RingOps -> ( N ` U ) e. X ) | 
						
							| 11 | 10 | adantr |  |-  ( ( R e. RingOps /\ A e. X ) -> ( N ` U ) e. X ) | 
						
							| 12 | 8 | adantr |  |-  ( ( R e. RingOps /\ A e. X ) -> U e. X ) | 
						
							| 13 | 11 12 | jca |  |-  ( ( R e. RingOps /\ A e. X ) -> ( ( N ` U ) e. X /\ U e. X ) ) | 
						
							| 14 | 1 2 3 | rngodi |  |-  ( ( R e. RingOps /\ ( A e. X /\ ( N ` U ) e. X /\ U e. X ) ) -> ( A H ( ( N ` U ) G U ) ) = ( ( A H ( N ` U ) ) G ( A H U ) ) ) | 
						
							| 15 | 14 | 3exp2 |  |-  ( R e. RingOps -> ( A e. X -> ( ( N ` U ) e. X -> ( U e. X -> ( A H ( ( N ` U ) G U ) ) = ( ( A H ( N ` U ) ) G ( A H U ) ) ) ) ) ) | 
						
							| 16 | 15 | imp43 |  |-  ( ( ( R e. RingOps /\ A e. X ) /\ ( ( N ` U ) e. X /\ U e. X ) ) -> ( A H ( ( N ` U ) G U ) ) = ( ( A H ( N ` U ) ) G ( A H U ) ) ) | 
						
							| 17 | 13 16 | mpdan |  |-  ( ( R e. RingOps /\ A e. X ) -> ( A H ( ( N ` U ) G U ) ) = ( ( A H ( N ` U ) ) G ( A H U ) ) ) | 
						
							| 18 |  | eqid |  |-  ( GId ` G ) = ( GId ` G ) | 
						
							| 19 | 1 3 4 18 | rngoaddneg2 |  |-  ( ( R e. RingOps /\ U e. X ) -> ( ( N ` U ) G U ) = ( GId ` G ) ) | 
						
							| 20 | 8 19 | mpdan |  |-  ( R e. RingOps -> ( ( N ` U ) G U ) = ( GId ` G ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( R e. RingOps /\ A e. X ) -> ( ( N ` U ) G U ) = ( GId ` G ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( ( R e. RingOps /\ A e. X ) -> ( A H ( ( N ` U ) G U ) ) = ( A H ( GId ` G ) ) ) | 
						
							| 23 | 18 3 1 2 | rngorz |  |-  ( ( R e. RingOps /\ A e. X ) -> ( A H ( GId ` G ) ) = ( GId ` G ) ) | 
						
							| 24 | 22 23 | eqtrd |  |-  ( ( R e. RingOps /\ A e. X ) -> ( A H ( ( N ` U ) G U ) ) = ( GId ` G ) ) | 
						
							| 25 | 2 7 5 | rngoridm |  |-  ( ( R e. RingOps /\ A e. X ) -> ( A H U ) = A ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ( R e. RingOps /\ A e. X ) -> ( ( A H ( N ` U ) ) G ( A H U ) ) = ( ( A H ( N ` U ) ) G A ) ) | 
						
							| 27 | 17 24 26 | 3eqtr3rd |  |-  ( ( R e. RingOps /\ A e. X ) -> ( ( A H ( N ` U ) ) G A ) = ( GId ` G ) ) | 
						
							| 28 | 1 2 3 | rngocl |  |-  ( ( R e. RingOps /\ A e. X /\ ( N ` U ) e. X ) -> ( A H ( N ` U ) ) e. X ) | 
						
							| 29 | 11 28 | mpd3an3 |  |-  ( ( R e. RingOps /\ A e. X ) -> ( A H ( N ` U ) ) e. X ) | 
						
							| 30 | 1 | rngogrpo |  |-  ( R e. RingOps -> G e. GrpOp ) | 
						
							| 31 | 3 18 4 | grpoinvid2 |  |-  ( ( G e. GrpOp /\ A e. X /\ ( A H ( N ` U ) ) e. X ) -> ( ( N ` A ) = ( A H ( N ` U ) ) <-> ( ( A H ( N ` U ) ) G A ) = ( GId ` G ) ) ) | 
						
							| 32 | 30 31 | syl3an1 |  |-  ( ( R e. RingOps /\ A e. X /\ ( A H ( N ` U ) ) e. X ) -> ( ( N ` A ) = ( A H ( N ` U ) ) <-> ( ( A H ( N ` U ) ) G A ) = ( GId ` G ) ) ) | 
						
							| 33 | 29 32 | mpd3an3 |  |-  ( ( R e. RingOps /\ A e. X ) -> ( ( N ` A ) = ( A H ( N ` U ) ) <-> ( ( A H ( N ` U ) ) G A ) = ( GId ` G ) ) ) | 
						
							| 34 | 27 33 | mpbird |  |-  ( ( R e. RingOps /\ A e. X ) -> ( N ` A ) = ( A H ( N ` U ) ) ) |