Step |
Hyp |
Ref |
Expression |
1 |
|
ringneg.1 |
|- G = ( 1st ` R ) |
2 |
|
ringneg.2 |
|- H = ( 2nd ` R ) |
3 |
|
ringneg.3 |
|- X = ran G |
4 |
|
ringneg.4 |
|- N = ( inv ` G ) |
5 |
|
ringneg.5 |
|- U = ( GId ` H ) |
6 |
1
|
rneqi |
|- ran G = ran ( 1st ` R ) |
7 |
3 6
|
eqtri |
|- X = ran ( 1st ` R ) |
8 |
7 2 5
|
rngo1cl |
|- ( R e. RingOps -> U e. X ) |
9 |
1 3 4
|
rngonegcl |
|- ( ( R e. RingOps /\ U e. X ) -> ( N ` U ) e. X ) |
10 |
8 9
|
mpdan |
|- ( R e. RingOps -> ( N ` U ) e. X ) |
11 |
10
|
adantr |
|- ( ( R e. RingOps /\ A e. X ) -> ( N ` U ) e. X ) |
12 |
8
|
adantr |
|- ( ( R e. RingOps /\ A e. X ) -> U e. X ) |
13 |
11 12
|
jca |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( N ` U ) e. X /\ U e. X ) ) |
14 |
1 2 3
|
rngodi |
|- ( ( R e. RingOps /\ ( A e. X /\ ( N ` U ) e. X /\ U e. X ) ) -> ( A H ( ( N ` U ) G U ) ) = ( ( A H ( N ` U ) ) G ( A H U ) ) ) |
15 |
14
|
3exp2 |
|- ( R e. RingOps -> ( A e. X -> ( ( N ` U ) e. X -> ( U e. X -> ( A H ( ( N ` U ) G U ) ) = ( ( A H ( N ` U ) ) G ( A H U ) ) ) ) ) ) |
16 |
15
|
imp43 |
|- ( ( ( R e. RingOps /\ A e. X ) /\ ( ( N ` U ) e. X /\ U e. X ) ) -> ( A H ( ( N ` U ) G U ) ) = ( ( A H ( N ` U ) ) G ( A H U ) ) ) |
17 |
13 16
|
mpdan |
|- ( ( R e. RingOps /\ A e. X ) -> ( A H ( ( N ` U ) G U ) ) = ( ( A H ( N ` U ) ) G ( A H U ) ) ) |
18 |
|
eqid |
|- ( GId ` G ) = ( GId ` G ) |
19 |
1 3 4 18
|
rngoaddneg2 |
|- ( ( R e. RingOps /\ U e. X ) -> ( ( N ` U ) G U ) = ( GId ` G ) ) |
20 |
8 19
|
mpdan |
|- ( R e. RingOps -> ( ( N ` U ) G U ) = ( GId ` G ) ) |
21 |
20
|
adantr |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( N ` U ) G U ) = ( GId ` G ) ) |
22 |
21
|
oveq2d |
|- ( ( R e. RingOps /\ A e. X ) -> ( A H ( ( N ` U ) G U ) ) = ( A H ( GId ` G ) ) ) |
23 |
18 3 1 2
|
rngorz |
|- ( ( R e. RingOps /\ A e. X ) -> ( A H ( GId ` G ) ) = ( GId ` G ) ) |
24 |
22 23
|
eqtrd |
|- ( ( R e. RingOps /\ A e. X ) -> ( A H ( ( N ` U ) G U ) ) = ( GId ` G ) ) |
25 |
2 7 5
|
rngoridm |
|- ( ( R e. RingOps /\ A e. X ) -> ( A H U ) = A ) |
26 |
25
|
oveq2d |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( A H ( N ` U ) ) G ( A H U ) ) = ( ( A H ( N ` U ) ) G A ) ) |
27 |
17 24 26
|
3eqtr3rd |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( A H ( N ` U ) ) G A ) = ( GId ` G ) ) |
28 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ A e. X /\ ( N ` U ) e. X ) -> ( A H ( N ` U ) ) e. X ) |
29 |
11 28
|
mpd3an3 |
|- ( ( R e. RingOps /\ A e. X ) -> ( A H ( N ` U ) ) e. X ) |
30 |
1
|
rngogrpo |
|- ( R e. RingOps -> G e. GrpOp ) |
31 |
3 18 4
|
grpoinvid2 |
|- ( ( G e. GrpOp /\ A e. X /\ ( A H ( N ` U ) ) e. X ) -> ( ( N ` A ) = ( A H ( N ` U ) ) <-> ( ( A H ( N ` U ) ) G A ) = ( GId ` G ) ) ) |
32 |
30 31
|
syl3an1 |
|- ( ( R e. RingOps /\ A e. X /\ ( A H ( N ` U ) ) e. X ) -> ( ( N ` A ) = ( A H ( N ` U ) ) <-> ( ( A H ( N ` U ) ) G A ) = ( GId ` G ) ) ) |
33 |
29 32
|
mpd3an3 |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( N ` A ) = ( A H ( N ` U ) ) <-> ( ( A H ( N ` U ) ) G A ) = ( GId ` G ) ) ) |
34 |
27 33
|
mpbird |
|- ( ( R e. RingOps /\ A e. X ) -> ( N ` A ) = ( A H ( N ` U ) ) ) |