Step |
Hyp |
Ref |
Expression |
1 |
|
ringnegmul.1 |
|- G = ( 1st ` R ) |
2 |
|
ringnegmul.2 |
|- H = ( 2nd ` R ) |
3 |
|
ringnegmul.3 |
|- X = ran G |
4 |
|
ringnegmul.4 |
|- N = ( inv ` G ) |
5 |
1
|
rneqi |
|- ran G = ran ( 1st ` R ) |
6 |
3 5
|
eqtri |
|- X = ran ( 1st ` R ) |
7 |
|
eqid |
|- ( GId ` H ) = ( GId ` H ) |
8 |
6 2 7
|
rngo1cl |
|- ( R e. RingOps -> ( GId ` H ) e. X ) |
9 |
1 3 4
|
rngonegcl |
|- ( ( R e. RingOps /\ ( GId ` H ) e. X ) -> ( N ` ( GId ` H ) ) e. X ) |
10 |
8 9
|
mpdan |
|- ( R e. RingOps -> ( N ` ( GId ` H ) ) e. X ) |
11 |
1 2 3
|
rngoass |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ ( N ` ( GId ` H ) ) e. X ) ) -> ( ( A H B ) H ( N ` ( GId ` H ) ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) |
12 |
11
|
3exp2 |
|- ( R e. RingOps -> ( A e. X -> ( B e. X -> ( ( N ` ( GId ` H ) ) e. X -> ( ( A H B ) H ( N ` ( GId ` H ) ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) ) ) ) |
13 |
12
|
com24 |
|- ( R e. RingOps -> ( ( N ` ( GId ` H ) ) e. X -> ( B e. X -> ( A e. X -> ( ( A H B ) H ( N ` ( GId ` H ) ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) ) ) ) |
14 |
13
|
com34 |
|- ( R e. RingOps -> ( ( N ` ( GId ` H ) ) e. X -> ( A e. X -> ( B e. X -> ( ( A H B ) H ( N ` ( GId ` H ) ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) ) ) ) |
15 |
10 14
|
mpd |
|- ( R e. RingOps -> ( A e. X -> ( B e. X -> ( ( A H B ) H ( N ` ( GId ` H ) ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) ) ) |
16 |
15
|
3imp |
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( ( A H B ) H ( N ` ( GId ` H ) ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) |
17 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X ) |
18 |
17
|
3expb |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X ) ) -> ( A H B ) e. X ) |
19 |
1 2 3 4 7
|
rngonegmn1r |
|- ( ( R e. RingOps /\ ( A H B ) e. X ) -> ( N ` ( A H B ) ) = ( ( A H B ) H ( N ` ( GId ` H ) ) ) ) |
20 |
18 19
|
syldan |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X ) ) -> ( N ` ( A H B ) ) = ( ( A H B ) H ( N ` ( GId ` H ) ) ) ) |
21 |
20
|
3impb |
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( N ` ( A H B ) ) = ( ( A H B ) H ( N ` ( GId ` H ) ) ) ) |
22 |
1 2 3 4 7
|
rngonegmn1r |
|- ( ( R e. RingOps /\ B e. X ) -> ( N ` B ) = ( B H ( N ` ( GId ` H ) ) ) ) |
23 |
22
|
3adant2 |
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( N ` B ) = ( B H ( N ` ( GId ` H ) ) ) ) |
24 |
23
|
oveq2d |
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H ( N ` B ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) |
25 |
16 21 24
|
3eqtr4d |
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( N ` ( A H B ) ) = ( A H ( N ` B ) ) ) |