Metamath Proof Explorer


Theorem rngopidOLD

Description: Obsolete version of mndpfo as of 23-Jan-2020. Range of an operation with a left and right identity element. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion rngopidOLD
|- ( G e. ( Magma i^i ExId ) -> ran G = dom dom G )

Proof

Step Hyp Ref Expression
1 eqid
 |-  dom dom G = dom dom G
2 1 opidonOLD
 |-  ( G e. ( Magma i^i ExId ) -> G : ( dom dom G X. dom dom G ) -onto-> dom dom G )
3 forn
 |-  ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> ran G = dom dom G )
4 2 3 syl
 |-  ( G e. ( Magma i^i ExId ) -> ran G = dom dom G )