Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringi.1 | |- G = ( 1st ` R ) | |
| ringi.2 | |- H = ( 2nd ` R ) | ||
| ringi.3 | |- X = ran G | ||
| Assertion | rngosm | |- ( R e. RingOps -> H : ( X X. X ) --> X ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringi.1 | |- G = ( 1st ` R ) | |
| 2 | ringi.2 | |- H = ( 2nd ` R ) | |
| 3 | ringi.3 | |- X = ran G | |
| 4 | 1 2 3 | rngoi | |- ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) | 
| 5 | 4 | simpld | |- ( R e. RingOps -> ( G e. AbelOp /\ H : ( X X. X ) --> X ) ) | 
| 6 | 5 | simprd | |- ( R e. RingOps -> H : ( X X. X ) --> X ) |