Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringi.1 | |- G = ( 1st ` R ) |
|
ringi.2 | |- H = ( 2nd ` R ) |
||
ringi.3 | |- X = ran G |
||
Assertion | rngosm | |- ( R e. RingOps -> H : ( X X. X ) --> X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringi.1 | |- G = ( 1st ` R ) |
|
2 | ringi.2 | |- H = ( 2nd ` R ) |
|
3 | ringi.3 | |- X = ran G |
|
4 | 1 2 3 | rngoi | |- ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |
5 | 4 | simpld | |- ( R e. RingOps -> ( G e. AbelOp /\ H : ( X X. X ) --> X ) ) |
6 | 5 | simprd | |- ( R e. RingOps -> H : ( X X. X ) --> X ) |