| Step | Hyp | Ref | Expression | 
						
							| 1 |  | on1el3.1 |  |-  G = ( 1st ` R ) | 
						
							| 2 |  | on1el3.2 |  |-  X = ran G | 
						
							| 3 | 1 | rngogrpo |  |-  ( R e. RingOps -> G e. GrpOp ) | 
						
							| 4 | 2 | grpofo |  |-  ( G e. GrpOp -> G : ( X X. X ) -onto-> X ) | 
						
							| 5 |  | fof |  |-  ( G : ( X X. X ) -onto-> X -> G : ( X X. X ) --> X ) | 
						
							| 6 | 3 4 5 | 3syl |  |-  ( R e. RingOps -> G : ( X X. X ) --> X ) | 
						
							| 7 | 6 | adantr |  |-  ( ( R e. RingOps /\ A e. B ) -> G : ( X X. X ) --> X ) | 
						
							| 8 |  | id |  |-  ( X = { A } -> X = { A } ) | 
						
							| 9 | 8 | sqxpeqd |  |-  ( X = { A } -> ( X X. X ) = ( { A } X. { A } ) ) | 
						
							| 10 | 9 8 | feq23d |  |-  ( X = { A } -> ( G : ( X X. X ) --> X <-> G : ( { A } X. { A } ) --> { A } ) ) | 
						
							| 11 | 7 10 | syl5ibcom |  |-  ( ( R e. RingOps /\ A e. B ) -> ( X = { A } -> G : ( { A } X. { A } ) --> { A } ) ) | 
						
							| 12 | 7 | fdmd |  |-  ( ( R e. RingOps /\ A e. B ) -> dom G = ( X X. X ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( R e. RingOps /\ A e. B ) -> ( X X. X ) = dom G ) | 
						
							| 14 |  | fdm |  |-  ( G : ( { A } X. { A } ) --> { A } -> dom G = ( { A } X. { A } ) ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( G : ( { A } X. { A } ) --> { A } -> ( ( X X. X ) = dom G <-> ( X X. X ) = ( { A } X. { A } ) ) ) | 
						
							| 16 | 13 15 | syl5ibcom |  |-  ( ( R e. RingOps /\ A e. B ) -> ( G : ( { A } X. { A } ) --> { A } -> ( X X. X ) = ( { A } X. { A } ) ) ) | 
						
							| 17 |  | xpid11 |  |-  ( ( X X. X ) = ( { A } X. { A } ) <-> X = { A } ) | 
						
							| 18 | 16 17 | imbitrdi |  |-  ( ( R e. RingOps /\ A e. B ) -> ( G : ( { A } X. { A } ) --> { A } -> X = { A } ) ) | 
						
							| 19 | 11 18 | impbid |  |-  ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> G : ( { A } X. { A } ) --> { A } ) ) | 
						
							| 20 |  | simpr |  |-  ( ( R e. RingOps /\ A e. B ) -> A e. B ) | 
						
							| 21 |  | xpsng |  |-  ( ( A e. B /\ A e. B ) -> ( { A } X. { A } ) = { <. A , A >. } ) | 
						
							| 22 | 20 21 | sylancom |  |-  ( ( R e. RingOps /\ A e. B ) -> ( { A } X. { A } ) = { <. A , A >. } ) | 
						
							| 23 | 22 | feq2d |  |-  ( ( R e. RingOps /\ A e. B ) -> ( G : ( { A } X. { A } ) --> { A } <-> G : { <. A , A >. } --> { A } ) ) | 
						
							| 24 |  | opex |  |-  <. A , A >. e. _V | 
						
							| 25 |  | fsng |  |-  ( ( <. A , A >. e. _V /\ A e. B ) -> ( G : { <. A , A >. } --> { A } <-> G = { <. <. A , A >. , A >. } ) ) | 
						
							| 26 | 24 20 25 | sylancr |  |-  ( ( R e. RingOps /\ A e. B ) -> ( G : { <. A , A >. } --> { A } <-> G = { <. <. A , A >. , A >. } ) ) | 
						
							| 27 | 19 23 26 | 3bitrd |  |-  ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> G = { <. <. A , A >. , A >. } ) ) | 
						
							| 28 | 1 | eqeq1i |  |-  ( G = { <. <. A , A >. , A >. } <-> ( 1st ` R ) = { <. <. A , A >. , A >. } ) | 
						
							| 29 | 27 28 | bitrdi |  |-  ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> ( 1st ` R ) = { <. <. A , A >. , A >. } ) ) | 
						
							| 30 | 29 | anbi1d |  |-  ( ( R e. RingOps /\ A e. B ) -> ( ( X = { A } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) <-> ( ( 1st ` R ) = { <. <. A , A >. , A >. } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) ) | 
						
							| 31 |  | eqid |  |-  ( 2nd ` R ) = ( 2nd ` R ) | 
						
							| 32 | 1 31 2 | rngosm |  |-  ( R e. RingOps -> ( 2nd ` R ) : ( X X. X ) --> X ) | 
						
							| 33 | 32 | adantr |  |-  ( ( R e. RingOps /\ A e. B ) -> ( 2nd ` R ) : ( X X. X ) --> X ) | 
						
							| 34 | 9 8 | feq23d |  |-  ( X = { A } -> ( ( 2nd ` R ) : ( X X. X ) --> X <-> ( 2nd ` R ) : ( { A } X. { A } ) --> { A } ) ) | 
						
							| 35 | 33 34 | syl5ibcom |  |-  ( ( R e. RingOps /\ A e. B ) -> ( X = { A } -> ( 2nd ` R ) : ( { A } X. { A } ) --> { A } ) ) | 
						
							| 36 | 22 | feq2d |  |-  ( ( R e. RingOps /\ A e. B ) -> ( ( 2nd ` R ) : ( { A } X. { A } ) --> { A } <-> ( 2nd ` R ) : { <. A , A >. } --> { A } ) ) | 
						
							| 37 |  | fsng |  |-  ( ( <. A , A >. e. _V /\ A e. B ) -> ( ( 2nd ` R ) : { <. A , A >. } --> { A } <-> ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) | 
						
							| 38 | 24 20 37 | sylancr |  |-  ( ( R e. RingOps /\ A e. B ) -> ( ( 2nd ` R ) : { <. A , A >. } --> { A } <-> ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) | 
						
							| 39 | 36 38 | bitrd |  |-  ( ( R e. RingOps /\ A e. B ) -> ( ( 2nd ` R ) : ( { A } X. { A } ) --> { A } <-> ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) | 
						
							| 40 | 35 39 | sylibd |  |-  ( ( R e. RingOps /\ A e. B ) -> ( X = { A } -> ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) | 
						
							| 41 | 40 | pm4.71d |  |-  ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> ( X = { A } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) ) | 
						
							| 42 |  | relrngo |  |-  Rel RingOps | 
						
							| 43 |  | df-rel |  |-  ( Rel RingOps <-> RingOps C_ ( _V X. _V ) ) | 
						
							| 44 | 42 43 | mpbi |  |-  RingOps C_ ( _V X. _V ) | 
						
							| 45 | 44 | sseli |  |-  ( R e. RingOps -> R e. ( _V X. _V ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( R e. RingOps /\ A e. B ) -> R e. ( _V X. _V ) ) | 
						
							| 47 |  | eqop |  |-  ( R e. ( _V X. _V ) -> ( R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. <-> ( ( 1st ` R ) = { <. <. A , A >. , A >. } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) ) | 
						
							| 48 | 46 47 | syl |  |-  ( ( R e. RingOps /\ A e. B ) -> ( R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. <-> ( ( 1st ` R ) = { <. <. A , A >. , A >. } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) ) | 
						
							| 49 | 30 41 48 | 3bitr4d |  |-  ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. ) ) |