Metamath Proof Explorer


Theorem rngosn4

Description: Obsolete as of 25-Jan-2020. Use rngen1zr instead. The only unital ring with one element is the zero ring. (Contributed by FL, 14-Feb-2010) (Revised by Mario Carneiro, 30-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses on1el3.1
|- G = ( 1st ` R )
on1el3.2
|- X = ran G
Assertion rngosn4
|- ( ( R e. RingOps /\ A e. X ) -> ( X ~~ 1o <-> R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. ) )

Proof

Step Hyp Ref Expression
1 on1el3.1
 |-  G = ( 1st ` R )
2 on1el3.2
 |-  X = ran G
3 en1eqsnbi
 |-  ( A e. X -> ( X ~~ 1o <-> X = { A } ) )
4 3 adantl
 |-  ( ( R e. RingOps /\ A e. X ) -> ( X ~~ 1o <-> X = { A } ) )
5 1 2 rngosn3
 |-  ( ( R e. RingOps /\ A e. X ) -> ( X = { A } <-> R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. ) )
6 4 5 bitrd
 |-  ( ( R e. RingOps /\ A e. X ) -> ( X ~~ 1o <-> R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. ) )