Description: Obsolete as of 25-Jan-2020. Use rngen1zr instead. The only unital ring with one element is the zero ring. (Contributed by FL, 14-Feb-2010) (Revised by Mario Carneiro, 30-Apr-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | on1el3.1 | |- G = ( 1st ` R ) |
|
on1el3.2 | |- X = ran G |
||
Assertion | rngosn4 | |- ( ( R e. RingOps /\ A e. X ) -> ( X ~~ 1o <-> R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on1el3.1 | |- G = ( 1st ` R ) |
|
2 | on1el3.2 | |- X = ran G |
|
3 | en1eqsnbi | |- ( A e. X -> ( X ~~ 1o <-> X = { A } ) ) |
|
4 | 3 | adantl | |- ( ( R e. RingOps /\ A e. X ) -> ( X ~~ 1o <-> X = { A } ) ) |
5 | 1 2 | rngosn3 | |- ( ( R e. RingOps /\ A e. X ) -> ( X = { A } <-> R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. ) ) |
6 | 4 5 | bitrd | |- ( ( R e. RingOps /\ A e. X ) -> ( X ~~ 1o <-> R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. ) ) |