Metamath Proof Explorer


Theorem rngosn6

Description: Obsolete as of 25-Jan-2020. Use ringen1zr or srgen1zr instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010) (New usage is discouraged.)

Ref Expression
Hypotheses on1el3.1
|- G = ( 1st ` R )
on1el3.2
|- X = ran G
on1el3.3
|- Z = ( GId ` G )
Assertion rngosn6
|- ( R e. RingOps -> ( X ~~ 1o <-> R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. ) )

Proof

Step Hyp Ref Expression
1 on1el3.1
 |-  G = ( 1st ` R )
2 on1el3.2
 |-  X = ran G
3 on1el3.3
 |-  Z = ( GId ` G )
4 1 2 3 rngo0cl
 |-  ( R e. RingOps -> Z e. X )
5 1 2 rngosn4
 |-  ( ( R e. RingOps /\ Z e. X ) -> ( X ~~ 1o <-> R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. ) )
6 4 5 mpdan
 |-  ( R e. RingOps -> ( X ~~ 1o <-> R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. ) )