Description: Subtraction in a ring, in terms of addition and negation. (Contributed by Jeff Madsen, 19-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringnegcl.1 | |- G = ( 1st ` R ) |
|
ringnegcl.2 | |- X = ran G |
||
ringnegcl.3 | |- N = ( inv ` G ) |
||
ringsub.4 | |- D = ( /g ` G ) |
||
Assertion | rngosub | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegcl.1 | |- G = ( 1st ` R ) |
|
2 | ringnegcl.2 | |- X = ran G |
|
3 | ringnegcl.3 | |- N = ( inv ` G ) |
|
4 | ringsub.4 | |- D = ( /g ` G ) |
|
5 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
6 | 2 3 4 | grpodivval | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) ) |
7 | 5 6 | syl3an1 | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) ) |