Metamath Proof Explorer


Theorem rngosub

Description: Subtraction in a ring, in terms of addition and negation. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringnegcl.1
|- G = ( 1st ` R )
ringnegcl.2
|- X = ran G
ringnegcl.3
|- N = ( inv ` G )
ringsub.4
|- D = ( /g ` G )
Assertion rngosub
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) )

Proof

Step Hyp Ref Expression
1 ringnegcl.1
 |-  G = ( 1st ` R )
2 ringnegcl.2
 |-  X = ran G
3 ringnegcl.3
 |-  N = ( inv ` G )
4 ringsub.4
 |-  D = ( /g ` G )
5 1 rngogrpo
 |-  ( R e. RingOps -> G e. GrpOp )
6 2 3 4 grpodivval
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) )
7 5 6 syl3an1
 |-  ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) )