Step |
Hyp |
Ref |
Expression |
1 |
|
ringsubdi.1 |
|- G = ( 1st ` R ) |
2 |
|
ringsubdi.2 |
|- H = ( 2nd ` R ) |
3 |
|
ringsubdi.3 |
|- X = ran G |
4 |
|
ringsubdi.4 |
|- D = ( /g ` G ) |
5 |
|
eqid |
|- ( inv ` G ) = ( inv ` G ) |
6 |
1 3 5 4
|
rngosub |
|- ( ( R e. RingOps /\ B e. X /\ C e. X ) -> ( B D C ) = ( B G ( ( inv ` G ) ` C ) ) ) |
7 |
6
|
3adant3r1 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) = ( B G ( ( inv ` G ) ` C ) ) ) |
8 |
7
|
oveq2d |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B D C ) ) = ( A H ( B G ( ( inv ` G ) ` C ) ) ) ) |
9 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X ) |
10 |
9
|
3adant3r3 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H B ) e. X ) |
11 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ A e. X /\ C e. X ) -> ( A H C ) e. X ) |
12 |
11
|
3adant3r2 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H C ) e. X ) |
13 |
10 12
|
jca |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) e. X /\ ( A H C ) e. X ) ) |
14 |
1 3 5 4
|
rngosub |
|- ( ( R e. RingOps /\ ( A H B ) e. X /\ ( A H C ) e. X ) -> ( ( A H B ) D ( A H C ) ) = ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) ) |
15 |
14
|
3expb |
|- ( ( R e. RingOps /\ ( ( A H B ) e. X /\ ( A H C ) e. X ) ) -> ( ( A H B ) D ( A H C ) ) = ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) ) |
16 |
13 15
|
syldan |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) D ( A H C ) ) = ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) ) |
17 |
|
idd |
|- ( R e. RingOps -> ( A e. X -> A e. X ) ) |
18 |
|
idd |
|- ( R e. RingOps -> ( B e. X -> B e. X ) ) |
19 |
1 3 5
|
rngonegcl |
|- ( ( R e. RingOps /\ C e. X ) -> ( ( inv ` G ) ` C ) e. X ) |
20 |
19
|
ex |
|- ( R e. RingOps -> ( C e. X -> ( ( inv ` G ) ` C ) e. X ) ) |
21 |
17 18 20
|
3anim123d |
|- ( R e. RingOps -> ( ( A e. X /\ B e. X /\ C e. X ) -> ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) ) |
22 |
21
|
imp |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) |
23 |
1 2 3
|
rngodi |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) -> ( A H ( B G ( ( inv ` G ) ` C ) ) ) = ( ( A H B ) G ( A H ( ( inv ` G ) ` C ) ) ) ) |
24 |
22 23
|
syldan |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B G ( ( inv ` G ) ` C ) ) ) = ( ( A H B ) G ( A H ( ( inv ` G ) ` C ) ) ) ) |
25 |
1 2 3 5
|
rngonegrmul |
|- ( ( R e. RingOps /\ A e. X /\ C e. X ) -> ( ( inv ` G ) ` ( A H C ) ) = ( A H ( ( inv ` G ) ` C ) ) ) |
26 |
25
|
3adant3r2 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` ( A H C ) ) = ( A H ( ( inv ` G ) ` C ) ) ) |
27 |
26
|
oveq2d |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) = ( ( A H B ) G ( A H ( ( inv ` G ) ` C ) ) ) ) |
28 |
24 27
|
eqtr4d |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B G ( ( inv ` G ) ` C ) ) ) = ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) ) |
29 |
16 28
|
eqtr4d |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) D ( A H C ) ) = ( A H ( B G ( ( inv ` G ) ` C ) ) ) ) |
30 |
8 29
|
eqtr4d |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B D C ) ) = ( ( A H B ) D ( A H C ) ) ) |