| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uznzr.1 |
|- G = ( 1st ` R ) |
| 2 |
|
uznzr.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
uznzr.3 |
|- Z = ( GId ` G ) |
| 4 |
|
uznzr.4 |
|- U = ( GId ` H ) |
| 5 |
|
uznzr.5 |
|- X = ran G |
| 6 |
1 5 3
|
rngo0cl |
|- ( R e. RingOps -> Z e. X ) |
| 7 |
|
en1eqsn |
|- ( ( Z e. X /\ X ~~ 1o ) -> X = { Z } ) |
| 8 |
1
|
rneqi |
|- ran G = ran ( 1st ` R ) |
| 9 |
8 2 4
|
rngo1cl |
|- ( R e. RingOps -> U e. ran G ) |
| 10 |
|
eleq2 |
|- ( X = { Z } -> ( U e. X <-> U e. { Z } ) ) |
| 11 |
10
|
biimpd |
|- ( X = { Z } -> ( U e. X -> U e. { Z } ) ) |
| 12 |
|
elsni |
|- ( U e. { Z } -> U = Z ) |
| 13 |
11 12
|
syl6com |
|- ( U e. X -> ( X = { Z } -> U = Z ) ) |
| 14 |
5
|
eqcomi |
|- ran G = X |
| 15 |
13 14
|
eleq2s |
|- ( U e. ran G -> ( X = { Z } -> U = Z ) ) |
| 16 |
9 15
|
syl |
|- ( R e. RingOps -> ( X = { Z } -> U = Z ) ) |
| 17 |
7 16
|
syl5com |
|- ( ( Z e. X /\ X ~~ 1o ) -> ( R e. RingOps -> U = Z ) ) |
| 18 |
17
|
ex |
|- ( Z e. X -> ( X ~~ 1o -> ( R e. RingOps -> U = Z ) ) ) |
| 19 |
18
|
com23 |
|- ( Z e. X -> ( R e. RingOps -> ( X ~~ 1o -> U = Z ) ) ) |
| 20 |
6 19
|
mpcom |
|- ( R e. RingOps -> ( X ~~ 1o -> U = Z ) ) |
| 21 |
1 5
|
rngone0 |
|- ( R e. RingOps -> X =/= (/) ) |
| 22 |
|
oveq2 |
|- ( U = Z -> ( x H U ) = ( x H Z ) ) |
| 23 |
22
|
ralrimivw |
|- ( U = Z -> A. x e. X ( x H U ) = ( x H Z ) ) |
| 24 |
3 5 1 2
|
rngorz |
|- ( ( R e. RingOps /\ x e. X ) -> ( x H Z ) = Z ) |
| 25 |
24
|
ralrimiva |
|- ( R e. RingOps -> A. x e. X ( x H Z ) = Z ) |
| 26 |
5 8
|
eqtri |
|- X = ran ( 1st ` R ) |
| 27 |
2 26 4
|
rngoridm |
|- ( ( R e. RingOps /\ x e. X ) -> ( x H U ) = x ) |
| 28 |
27
|
ralrimiva |
|- ( R e. RingOps -> A. x e. X ( x H U ) = x ) |
| 29 |
|
r19.26 |
|- ( A. x e. X ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) <-> ( A. x e. X ( x H U ) = x /\ A. x e. X ( x H U ) = ( x H Z ) ) ) |
| 30 |
|
r19.26 |
|- ( A. x e. X ( ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) /\ ( x H Z ) = Z ) <-> ( A. x e. X ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) /\ A. x e. X ( x H Z ) = Z ) ) |
| 31 |
|
eqtr |
|- ( ( x = ( x H U ) /\ ( x H U ) = ( x H Z ) ) -> x = ( x H Z ) ) |
| 32 |
|
eqtr |
|- ( ( x = ( x H Z ) /\ ( x H Z ) = Z ) -> x = Z ) |
| 33 |
32
|
ex |
|- ( x = ( x H Z ) -> ( ( x H Z ) = Z -> x = Z ) ) |
| 34 |
31 33
|
syl |
|- ( ( x = ( x H U ) /\ ( x H U ) = ( x H Z ) ) -> ( ( x H Z ) = Z -> x = Z ) ) |
| 35 |
34
|
ex |
|- ( x = ( x H U ) -> ( ( x H U ) = ( x H Z ) -> ( ( x H Z ) = Z -> x = Z ) ) ) |
| 36 |
35
|
eqcoms |
|- ( ( x H U ) = x -> ( ( x H U ) = ( x H Z ) -> ( ( x H Z ) = Z -> x = Z ) ) ) |
| 37 |
36
|
imp31 |
|- ( ( ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) /\ ( x H Z ) = Z ) -> x = Z ) |
| 38 |
37
|
ralimi |
|- ( A. x e. X ( ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) /\ ( x H Z ) = Z ) -> A. x e. X x = Z ) |
| 39 |
|
eqsn |
|- ( X =/= (/) -> ( X = { Z } <-> A. x e. X x = Z ) ) |
| 40 |
|
ensn1g |
|- ( Z e. X -> { Z } ~~ 1o ) |
| 41 |
6 40
|
syl |
|- ( R e. RingOps -> { Z } ~~ 1o ) |
| 42 |
|
breq1 |
|- ( X = { Z } -> ( X ~~ 1o <-> { Z } ~~ 1o ) ) |
| 43 |
41 42
|
imbitrrid |
|- ( X = { Z } -> ( R e. RingOps -> X ~~ 1o ) ) |
| 44 |
39 43
|
biimtrrdi |
|- ( X =/= (/) -> ( A. x e. X x = Z -> ( R e. RingOps -> X ~~ 1o ) ) ) |
| 45 |
44
|
com3l |
|- ( A. x e. X x = Z -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) |
| 46 |
38 45
|
syl |
|- ( A. x e. X ( ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) /\ ( x H Z ) = Z ) -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) |
| 47 |
30 46
|
sylbir |
|- ( ( A. x e. X ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) /\ A. x e. X ( x H Z ) = Z ) -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) |
| 48 |
47
|
ex |
|- ( A. x e. X ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) -> ( A. x e. X ( x H Z ) = Z -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) ) |
| 49 |
29 48
|
sylbir |
|- ( ( A. x e. X ( x H U ) = x /\ A. x e. X ( x H U ) = ( x H Z ) ) -> ( A. x e. X ( x H Z ) = Z -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) ) |
| 50 |
49
|
ex |
|- ( A. x e. X ( x H U ) = x -> ( A. x e. X ( x H U ) = ( x H Z ) -> ( A. x e. X ( x H Z ) = Z -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) ) ) |
| 51 |
50
|
com24 |
|- ( A. x e. X ( x H U ) = x -> ( R e. RingOps -> ( A. x e. X ( x H Z ) = Z -> ( A. x e. X ( x H U ) = ( x H Z ) -> ( X =/= (/) -> X ~~ 1o ) ) ) ) ) |
| 52 |
28 51
|
mpcom |
|- ( R e. RingOps -> ( A. x e. X ( x H Z ) = Z -> ( A. x e. X ( x H U ) = ( x H Z ) -> ( X =/= (/) -> X ~~ 1o ) ) ) ) |
| 53 |
25 52
|
mpd |
|- ( R e. RingOps -> ( A. x e. X ( x H U ) = ( x H Z ) -> ( X =/= (/) -> X ~~ 1o ) ) ) |
| 54 |
23 53
|
syl5com |
|- ( U = Z -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) |
| 55 |
54
|
com13 |
|- ( X =/= (/) -> ( R e. RingOps -> ( U = Z -> X ~~ 1o ) ) ) |
| 56 |
21 55
|
mpcom |
|- ( R e. RingOps -> ( U = Z -> X ~~ 1o ) ) |
| 57 |
20 56
|
impbid |
|- ( R e. RingOps -> ( X ~~ 1o <-> U = Z ) ) |