| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnglidlmcl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 2 |  | rnglidlmcl.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | rnglidlmcl.t |  |-  .x. = ( .r ` R ) | 
						
							| 4 |  | rngridlmcl.u |  |-  U = ( LIdeal ` ( oppR ` R ) ) | 
						
							| 5 |  | eqid |  |-  ( oppR ` R ) = ( oppR ` R ) | 
						
							| 6 |  | eqid |  |-  ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) | 
						
							| 7 | 2 3 5 6 | opprmul |  |-  ( X ( .r ` ( oppR ` R ) ) Y ) = ( Y .x. X ) | 
						
							| 8 | 5 | opprrng |  |-  ( R e. Rng -> ( oppR ` R ) e. Rng ) | 
						
							| 9 |  | id |  |-  ( I e. U -> I e. U ) | 
						
							| 10 | 1 | eleq1i |  |-  ( .0. e. I <-> ( 0g ` R ) e. I ) | 
						
							| 11 | 10 | biimpi |  |-  ( .0. e. I -> ( 0g ` R ) e. I ) | 
						
							| 12 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 13 | 5 12 | oppr0 |  |-  ( 0g ` R ) = ( 0g ` ( oppR ` R ) ) | 
						
							| 14 | 5 2 | opprbas |  |-  B = ( Base ` ( oppR ` R ) ) | 
						
							| 15 | 13 14 6 4 | rnglidlmcl |  |-  ( ( ( ( oppR ` R ) e. Rng /\ I e. U /\ ( 0g ` R ) e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( X ( .r ` ( oppR ` R ) ) Y ) e. I ) | 
						
							| 16 | 8 9 11 15 | syl3anl |  |-  ( ( ( R e. Rng /\ I e. U /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( X ( .r ` ( oppR ` R ) ) Y ) e. I ) | 
						
							| 17 | 7 16 | eqeltrrid |  |-  ( ( ( R e. Rng /\ I e. U /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( Y .x. X ) e. I ) |