| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngcl.b |
|- B = ( Base ` R ) |
| 2 |
|
rngcl.t |
|- .x. = ( .r ` R ) |
| 3 |
|
rnglz.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
| 5 |
1 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
| 6 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 7 |
1 6 3
|
grplid |
|- ( ( R e. Grp /\ .0. e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 8 |
4 5 7
|
syl2anc2 |
|- ( R e. Rng -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 9 |
8
|
adantr |
|- ( ( R e. Rng /\ X e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 10 |
9
|
oveq2d |
|- ( ( R e. Rng /\ X e. B ) -> ( X .x. ( .0. ( +g ` R ) .0. ) ) = ( X .x. .0. ) ) |
| 11 |
|
simpr |
|- ( ( R e. Rng /\ X e. B ) -> X e. B ) |
| 12 |
1 3
|
rng0cl |
|- ( R e. Rng -> .0. e. B ) |
| 13 |
12
|
adantr |
|- ( ( R e. Rng /\ X e. B ) -> .0. e. B ) |
| 14 |
11 13 13
|
3jca |
|- ( ( R e. Rng /\ X e. B ) -> ( X e. B /\ .0. e. B /\ .0. e. B ) ) |
| 15 |
1 6 2
|
rngdi |
|- ( ( R e. Rng /\ ( X e. B /\ .0. e. B /\ .0. e. B ) ) -> ( X .x. ( .0. ( +g ` R ) .0. ) ) = ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) ) |
| 16 |
14 15
|
syldan |
|- ( ( R e. Rng /\ X e. B ) -> ( X .x. ( .0. ( +g ` R ) .0. ) ) = ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) ) |
| 17 |
4
|
adantr |
|- ( ( R e. Rng /\ X e. B ) -> R e. Grp ) |
| 18 |
1 2
|
rngcl |
|- ( ( R e. Rng /\ X e. B /\ .0. e. B ) -> ( X .x. .0. ) e. B ) |
| 19 |
13 18
|
mpd3an3 |
|- ( ( R e. Rng /\ X e. B ) -> ( X .x. .0. ) e. B ) |
| 20 |
1 6 3
|
grplid |
|- ( ( R e. Grp /\ ( X .x. .0. ) e. B ) -> ( .0. ( +g ` R ) ( X .x. .0. ) ) = ( X .x. .0. ) ) |
| 21 |
20
|
eqcomd |
|- ( ( R e. Grp /\ ( X .x. .0. ) e. B ) -> ( X .x. .0. ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) ) |
| 22 |
17 19 21
|
syl2anc |
|- ( ( R e. Rng /\ X e. B ) -> ( X .x. .0. ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) ) |
| 23 |
10 16 22
|
3eqtr3d |
|- ( ( R e. Rng /\ X e. B ) -> ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) ) |
| 24 |
1 6
|
grprcan |
|- ( ( R e. Grp /\ ( ( X .x. .0. ) e. B /\ .0. e. B /\ ( X .x. .0. ) e. B ) ) -> ( ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) <-> ( X .x. .0. ) = .0. ) ) |
| 25 |
17 19 13 19 24
|
syl13anc |
|- ( ( R e. Rng /\ X e. B ) -> ( ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) <-> ( X .x. .0. ) = .0. ) ) |
| 26 |
23 25
|
mpbid |
|- ( ( R e. Rng /\ X e. B ) -> ( X .x. .0. ) = .0. ) |