Description: A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013) (Revised by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rngfn.r | |- R = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } |
|
| Assertion | rngstr | |- R Struct <. 1 , 3 >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngfn.r | |- R = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } |
|
| 2 | 1nn | |- 1 e. NN |
|
| 3 | basendx | |- ( Base ` ndx ) = 1 |
|
| 4 | 1lt2 | |- 1 < 2 |
|
| 5 | 2nn | |- 2 e. NN |
|
| 6 | plusgndx | |- ( +g ` ndx ) = 2 |
|
| 7 | 2lt3 | |- 2 < 3 |
|
| 8 | 3nn | |- 3 e. NN |
|
| 9 | mulrndx | |- ( .r ` ndx ) = 3 |
|
| 10 | 2 3 4 5 6 7 8 9 | strle3 | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } Struct <. 1 , 3 >. |
| 11 | 1 10 | eqbrtri | |- R Struct <. 1 , 3 >. |