Metamath Proof Explorer


Theorem rnin

Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of Suppes p. 60. (Contributed by NM, 15-Sep-2004)

Ref Expression
Assertion rnin
|- ran ( A i^i B ) C_ ( ran A i^i ran B )

Proof

Step Hyp Ref Expression
1 cnvin
 |-  `' ( A i^i B ) = ( `' A i^i `' B )
2 1 dmeqi
 |-  dom `' ( A i^i B ) = dom ( `' A i^i `' B )
3 dmin
 |-  dom ( `' A i^i `' B ) C_ ( dom `' A i^i dom `' B )
4 2 3 eqsstri
 |-  dom `' ( A i^i B ) C_ ( dom `' A i^i dom `' B )
5 df-rn
 |-  ran ( A i^i B ) = dom `' ( A i^i B )
6 df-rn
 |-  ran A = dom `' A
7 df-rn
 |-  ran B = dom `' B
8 6 7 ineq12i
 |-  ( ran A i^i ran B ) = ( dom `' A i^i dom `' B )
9 4 5 8 3sstr4i
 |-  ran ( A i^i B ) C_ ( ran A i^i ran B )