Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of Suppes p. 60. (Contributed by NM, 15-Sep-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | rnin | |- ran ( A i^i B ) C_ ( ran A i^i ran B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvin | |- `' ( A i^i B ) = ( `' A i^i `' B ) |
|
2 | 1 | dmeqi | |- dom `' ( A i^i B ) = dom ( `' A i^i `' B ) |
3 | dmin | |- dom ( `' A i^i `' B ) C_ ( dom `' A i^i dom `' B ) |
|
4 | 2 3 | eqsstri | |- dom `' ( A i^i B ) C_ ( dom `' A i^i dom `' B ) |
5 | df-rn | |- ran ( A i^i B ) = dom `' ( A i^i B ) |
|
6 | df-rn | |- ran A = dom `' A |
|
7 | df-rn | |- ran B = dom `' B |
|
8 | 6 7 | ineq12i | |- ( ran A i^i ran B ) = ( dom `' A i^i dom `' B ) |
9 | 4 5 8 | 3sstr4i | |- ran ( A i^i B ) C_ ( ran A i^i ran B ) |