Step |
Hyp |
Ref |
Expression |
1 |
|
dfss3 |
|- ( B C_ ran ( C |` A ) <-> A. y e. B y e. ran ( C |` A ) ) |
2 |
|
ssrnres |
|- ( B C_ ran ( C |` A ) <-> ran ( C i^i ( A X. B ) ) = B ) |
3 |
|
df-ima |
|- ( C " A ) = ran ( C |` A ) |
4 |
3
|
eleq2i |
|- ( y e. ( C " A ) <-> y e. ran ( C |` A ) ) |
5 |
|
vex |
|- y e. _V |
6 |
5
|
elima |
|- ( y e. ( C " A ) <-> E. x e. A x C y ) |
7 |
4 6
|
bitr3i |
|- ( y e. ran ( C |` A ) <-> E. x e. A x C y ) |
8 |
7
|
ralbii |
|- ( A. y e. B y e. ran ( C |` A ) <-> A. y e. B E. x e. A x C y ) |
9 |
1 2 8
|
3bitr3i |
|- ( ran ( C i^i ( A X. B ) ) = B <-> A. y e. B E. x e. A x C y ) |