Step |
Hyp |
Ref |
Expression |
1 |
|
rnmpt0f.1 |
|- F/ x ph |
2 |
|
rnmpt0f.2 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
3 |
|
rnmpt0f.3 |
|- F = ( x e. A |-> B ) |
4 |
2
|
ex |
|- ( ph -> ( x e. A -> B e. V ) ) |
5 |
1 4
|
ralrimi |
|- ( ph -> A. x e. A B e. V ) |
6 |
|
dmmptg |
|- ( A. x e. A B e. V -> dom ( x e. A |-> B ) = A ) |
7 |
5 6
|
syl |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
8 |
7
|
eqcomd |
|- ( ph -> A = dom ( x e. A |-> B ) ) |
9 |
8
|
eqeq1d |
|- ( ph -> ( A = (/) <-> dom ( x e. A |-> B ) = (/) ) ) |
10 |
|
dm0rn0 |
|- ( dom ( x e. A |-> B ) = (/) <-> ran ( x e. A |-> B ) = (/) ) |
11 |
10
|
a1i |
|- ( ph -> ( dom ( x e. A |-> B ) = (/) <-> ran ( x e. A |-> B ) = (/) ) ) |
12 |
3
|
rneqi |
|- ran F = ran ( x e. A |-> B ) |
13 |
12
|
a1i |
|- ( ph -> ran F = ran ( x e. A |-> B ) ) |
14 |
13
|
eqcomd |
|- ( ph -> ran ( x e. A |-> B ) = ran F ) |
15 |
14
|
eqeq1d |
|- ( ph -> ( ran ( x e. A |-> B ) = (/) <-> ran F = (/) ) ) |
16 |
9 11 15
|
3bitrrd |
|- ( ph -> ( ran F = (/) <-> A = (/) ) ) |