Metamath Proof Explorer


Theorem rnmptc

Description: Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019) Remove extra hypothesis. (Revised by SN, 17-Apr-2024)

Ref Expression
Hypotheses rnmptc.f
|- F = ( x e. A |-> B )
rnmptc.a
|- ( ph -> A =/= (/) )
Assertion rnmptc
|- ( ph -> ran F = { B } )

Proof

Step Hyp Ref Expression
1 rnmptc.f
 |-  F = ( x e. A |-> B )
2 rnmptc.a
 |-  ( ph -> A =/= (/) )
3 fconstmpt
 |-  ( A X. { B } ) = ( x e. A |-> B )
4 1 3 eqtr4i
 |-  F = ( A X. { B } )
5 4 rneqi
 |-  ran F = ran ( A X. { B } )
6 rnxp
 |-  ( A =/= (/) -> ran ( A X. { B } ) = { B } )
7 5 6 eqtrid
 |-  ( A =/= (/) -> ran F = { B } )
8 2 7 syl
 |-  ( ph -> ran F = { B } )